[1] Krishnan K, Sockalingam S, Bansal S, et al. Numerical simulation of ceramic composite armor subjected to ballistic impact[J]. Composites, 2010, 41: 583-593. [2] Feli S, Asgari M R. Finite element simulation of ceramic/composite armor under ballistic impact[J]. Composite Structures, 2011, 42(4):771-780. [3] Feli S, Asgari M R. An analytical model for perforation of ceramic/multi-laryered planar woven fabric targets byblunt projectiles[J]. Composite Structures, 2011, 93(2):548-560. [4] Fawaz Z, Zheng W, Behdinan K. Numerical simulation of normal and oblique ballistic impact on ceramic[J]. Composite Structures, 2004, 63(2):387-395. [5] 温垚珂,徐诚,陈爱军,等. 步枪弹侵彻明胶靶标的数值模拟[J]兵工学报,2013,34(1):14—19. WEN Yao-ke, XU Cheng, CHEN Ai-jun, et al.Numerical simulation of penetration of bullet on gelatin target[J]. Acta Armamentarii, 2013, 34(1):14-19. (in Chinese) [6] Simha C H M. Computational modeling of the penetration response of a high-purity ceramic[J]. International Journal of Impact Engineering, 2002, 27(1):65-86. [7] Cronin D S, Bui K, Kaufmann C, etal. Implementation and validation of the Johnson-Holmquist ceramic material model in LS-Dyna[C]//4th European LS-DYNA Users Conference. Ulm, Germany: DYNA more Gmh, 2003:D-I-47-D-I-59. [8] Cheng W, Hallquist J. Implementation of three-dimensional composite failure model into DYNA3D[M]. US: Livermore Software Technology Corporation, 2004. [9] Menna C, Asprone D, Caprino G, et al. Numerical simulation of impact tests on GFRP composite laminates[J]. International Journal of Impact Engineering, 2011, 38(8/9):677-685. [10] Segletes S B. Modeling the penetration behavior ofrigid spheres into ballistic gelatin, ARL-TR-4393[R]. Aberdeen Proving Ground, MD:Army Research Laboratory, 2008. [11] Kwon J, Subhash G. Compressive strain rate sensitivity of ballistic gelatin[J].Journal of Biomechanics, 2010, 43(3):420-425. [12] Wen Y K, Xu C, Wang H S, et al. Impact of steel spheres on ballistic gelatin at moderate velocities[J]. International Journal of Impact Engineering, 2013, 62:142-151. |