欢迎访问《兵工学报》官方网站,今天是

兵工学报

• •    下一篇

面向超低空电磁威胁域的无人机群ELPIO协同路径规划算法

郑菊红1,2,宁昕1,林时尧2*,刘大卫2   

  1. 1. 西北工业大学 航天学院, 西安 陕西 710072; 2. 中国兵器科学研究院, 北京 100089
  • 收稿日期:2025-02-18 修回日期:2025-04-21
  • 基金资助:
    中国科协青年人才托举工程(2023QNRC001)

UAVs Collaboration Path Planning Based on ELPIO in Minimum Altitude Electromagnetic Threat Area

ZHENG Juhong1,2, NING Xin1, LIN Shiyao2*, LIU Dawei2   

  1. 1. Shaanxi Aerospace Flight Vehicle Design Key Laboratory, School of Astronautics, Northwestern Polytechnical University, Xi’an 710072, Shaanxi, China; 2. Chinese Academy of Ordnance Sciences, Beijing 100089,China
  • Received:2025-02-18 Revised:2025-04-21

摘要: 针对超低空电磁威胁域中障碍物分布密集、种类多、电磁威胁强导致无人机群协同路径规划效率低、合理性差、已受扰等问题,提出一种改进的鸽群优化算法,提升无人机飞行的安全性及无人机群整体工作效能。分析超低空电磁威胁域的特点,并对多种类型的障碍物进行建模。在传统鸽群优化算法的不同阶段,分别引入精英学习因子和局部搜索策略,以提高算法的收敛速度和全局搜索能力。分别开展仿真实验和虚拟场景实验验证,并进行对比分析。研究结果表明,所提出的算法具有较好的全局搜索能力,航路代价值更低,收敛速度更快,可为无人机群在超低空电磁威胁域内进行安全高效的路径规划提供支撑。

关键词: 超低空威胁, 无人机群协同, 路径规划, 精英学习, 局部搜索, 改进鸽群优化算法

Abstract: An improved pigeon inspired optimization algorithm (PIO) is proposed to solve the path planning problem for unmanned aerial vehicles (UAVs) collaboration in minimum altitude electromagnetic threat area whose characteristic is dense distribution of obstacles, diverse types and strong electromagnetic interference. Furthermore, the safety of UAVs and the combat effectiveness of UAVs are enhanced. The characteristics of the minimum altitude electromagnetic threat area are analyzed and multiple types of obstacles in minimum altitude electromagnetic threat area are modeled. The elite learning factor and local search strategy are introduced in different stages of PIO to improve the convergence speed and global search ability of the improved algorithm. Simulation comparison experiments and virtual scene experiments are conducted to verify the presented method. The results indicate that the proposed algorithm has better global search capability and faster convergence speed. It can provide support for path planning of UAVs safely and effectively in minimum altitude electromagnetic threat area.

Key words: minimum altitude threat, UAVs collaboration, path planning, elite learning, local search, improved pigeon inspired optimization

中图分类号: