欢迎访问《兵工学报》官方网站,今天是

兵工学报

• •    下一篇

基于延时补偿策略与拉盖尔函数的松弛分布式轨迹跟踪算法

郭可晴1,2,王辉1,2*(),唐道光3,吕姝颖1,2   

  1. (1. 北京理工大学 宇航学院, 北京 100081; 2. 北京理工大学 中国-阿联酋智能无人系统“一带一路”联合实验室, 北京 100081; 3 中北大学 电气与控制工程学院, 山西 太原 030051)
  • 收稿日期:2025-01-16 修回日期:2025-05-08
  • 通讯作者: *邮箱:
  • 基金资助:
    国家级青年人才项目(3010013532409);国家自然科学基金项目(52272358)

Relaxed Distributed Trajectory Tracking Algorithm Based on Delay Compensation Strategy and Laguerre Function

GUO Keqing1,2, WANG Hui1,2*(), TANG Daoguang3, LÜ Shuying1,2   

  1. (1. School of Aerospace Engineering, Beijing Institute of Technology, Beijing 100081, China; 2. China-UAE Belt and Road Joint Laboratory on Intelligent Unmanned System, Beijing Institute of Technology, Beijing 100081, China; 3. School of Electrical and Control Engineering, North University of China, Taiyuan 030051, Shanxi, China)
  • Received:2025-01-16 Revised:2025-05-08

摘要: 针对无人机编队轨迹跟踪中的时延效应显著与计算资源需求高的问题,提出一种基于延时补偿策略与拉盖尔函数的松弛分布式模型预测控制算法。以分布式模型预测控制框架为基础,建立无人机编队离散运动模型,并引入拉盖尔函数将控制输入参数化,显著提高计算效率。通过离散控制屏障函数与松弛变量机制,实现对约束条件的动态调整,避免障碍冲突和机间碰撞。针对采样延时、计算延时和通信延时引起的误差累积问题,提出多延时耦合补偿同步机制,有效保障编队协同稳定控制。仿真实验结果表明,在随机扰动条件下,该算法可显著降低轨迹跟踪误差,提升动态响应速度,同时满足高实时性与高可靠性的需求,为无人机在复杂环境中的编队轨迹跟踪问题提供了有效解决方案。

关键词: 轨迹跟踪, 分布式模型预测控制, 拉盖尔函数, 延时补偿, 离散控制屏障函数

Abstract: Aiming at the problem of prominent delay effect and high computational resource requirements in UAV formation trajectory tracking, a relaxed distributed model predictive control algorithm based on delay compensation strategy and Laguerre function is proposed. Based on the distributed model predictive control framework, a discrete motion model of UAV formation is established, and the Laguerre function is introduced to parameterize the control inputs, which significantly improves the computational efficiency. Dynamic adjustment of constraints to avoid obstacle and inter-agent collisions is achieved through a discrete-time control barrier function and the slack variable mechanism. For the error accumulation problem caused by sampling delay, computation delay and communication delay, a multi-delay coupling compensation synchronization strategy is proposed to effectively guarantee the stable control of formation coordination. The simulation results show that the proposed algorithm demonstrates convergence of trajectory tracking errors and enhancement in dynamic responsiveness under random perturbation conditions. Furthermore, it meets the requirements for real-time performance and reliability, providing an effective solution to the trajectory tracking challenges faced by UAV formation in complex environments. Keywords: trajectory tracking; distributed model predictive control; Laguerre function; delay compensa

Key words: trajectory tracking, distributed model predictive control, Laguerre function, delay compensation, discrete-time control barrier function

中图分类号: