[1] AUSTIN F, CARBONE G, FALCO M, et al. Game theory for automated maneuvering during air-to-air combat[J]. Journal of Guidance, 1990, 13(6):1143-1149. [2] VIRTANEN K, KARELAHATI J, RAIVIO T. Modeling air combat by a moving horizon influence diagram game[J]. Journal of Guidance,Control, and Dynamics, 2006, 29(5):1080-1091. [3] 张涛, 于雷, 周中良, 等. 基于混合算法的空战机动决策[J]. 系统工程与电子技术, 2013, 35(7):1445-1450. ZHANG T, YU L, ZHOU Z L, et al. Decision-making for air combat maneuvering based on hybrid algorithm[J]. Systems Engineering and Electronics, 2013, 35(7):1445-1450.(in Chinese) [4] DUAN H B, ZHANG Y P, LIU S Q. Multiple UAVs/UGVs heterogeneous coordinated technique based on receding horizon control and velocity vector control[J]. Science China, 2011, 54(4):869-876. [5] ZHANG B, GAO X G, RU W. Route planning of UCAV based on artificial potential field method[C]∥Proceedings of the International Conference on Management Science and Intelligent Control. Honolulu, HI, US: IEEE, 2011:99-102. [6] LI Y, BAI B D, ZHANG Y N. Improved particle swarm optimization algorithm for fuzzy multi-class SVM[J].Journal of Sysytems Engineering and Electronics, 2010, 21(3):509-513. [7] 傅莉, 谢怀福, 孟光磊, 等. 基于滚动时域的无人机空战决策专家系统[J]. 北京航空航天大学学报, 2015, 41(11):1994-1999. FU L, XIE H F, MENG G L, et al. An UAV air-combat decision expert system based on receding horizon control[J]. Journal of Beijing University of Aeronautics and Astronautics, 2015, 41(11): 1994-1999.(in Chinese) [8] HUANG C Q, DONG K S, HUANG H Q, et al. Autonomous air combat maneuver decision using Bayesian inference and moving horizon optimization[J]. Journal of Systems Engineering and Electronics, 2018, 29(1):86-97. [9] 王昱, 章卫国, 傅莉, 等. 基于鲁棒优化的无人机空战博弈决策[J]. 系统工程与电子技术, 2015, 37(11):2531-2535. WANG Y, ZHANG W G, FU L, et al. Game decision making of UAV aerial combat based on robust optimization[J]. Systems Engineering and Electronics, 2015, 37(11):2531-2535.(in Chinese) [10] 徐鸣, 马龙华, 顾江萍, 等. 一种改进的多目标鲁棒优化方法[J]. 控制与决策, 2013, 28(8):1178-1182. XU M, MA L H, GU J P, et al. An improved robust multi-objective optimization control method[J]. Control and Decision, 2013, 28(8):1178-1182.(in Chinese) [11] 国海峰, 侯满义, 张庆杰, 等. 基于统计学原理的无人作战飞机鲁棒机动决策[J]. 兵工学报, 2017, 38(1):160-167. GUO H F, HOU M Y, ZHANG Q J, et al. UCAV robust maneuver decision based on statistics principle[J]. Acta Armamentarii, 2017, 38(1):160-167.(in Chinese) [12] SUN T Y, TSAI S J, LEE Y N, et al. The study on intelligent advanced fighter air combat decision support system[C]∥Proceedings of the International Conference on Information Reuse and Integration. Waikoloa, HI, US: IEEE, 2006:39-44. [13] 孙楚, 赵辉, 王渊, 等. 基于强化学习的无人机自主机动决策方法[J]. 火力与指挥控制, 2019, 44(4):142-149. SUN C, ZHAO H, WANG Y, et al. UCAV autonomic maneuver decision- making method based on reinforcement learning[J]. Fire Control and Command Control, 2019, 44(4):142-149.(in Chinese) [14] 杜海文, 崔明朗, 韩统, 等. 基于多目标优化与强化学习的空战机动决策[J]. 北京航空航天大学学报, 2018, 44(11):2247-2256. DU H W, CUI M L, HAN T, et al. Maneuvering decision in air combat based on multi-objective optimization and reinforcement learning[J]. Journal of Beijing University of Aeronautics and Astronautics, 2018, 44(11):2247-2256.(in Chinese) [15] MIRJALILI S, SAREMI S, MIRJALILI S M, et al. Multi-objective grey wolf optimizer:a novel algorithm for multi-criterion optimization[J]. Expert Systems with Applications, 2016, 47:106-119. [16] 左磊. 基于值函数逼近与状态空间分解的增强学习方法研究[D]. 长沙:国防科学技术大学, 2011. ZUO L. Research on reinforcement learning based on value function approximation and state space decomposition[D]. Changsha:National University of Defense Technology, 2011.(in Chinese) [17] 李世豪, 丁勇, 高振龙. 基于直觉模糊博弈的无人机空战机动决策[J]. 系统工程与电子技术, 2019, 41(5):1063-1070. LI S H, DING Y, GAO Z L. UAV air combat maneuvering decision based on intuitionistic fuzzy game theory[J]. Systems Engineering and Electronics, 2019, 41(5):1063-1070.(in Chinese) [18] 伊恩·古德费洛, 约书亚·本吉奥, 亚伦·库维尔. 深度学习[M].赵申剑,黎彧君,符天凡, 等,译. 北京:人民邮电出版社, 2017:126-188. GOODFELLOW I,BENGIO Y, COURVILLE A. Deep learning[M]. ZHAO S J, LI Y J, FU T F, et al, translated. Beijing: Press of People’s Post and Telecommunications, 2017:126-188.(in Chinese) [19] WILLIAMS P. Three-dimensional aircraft terrain-following via real-time optimal control[J]. Journal of Guidance, Control, and Dynamics, 1990, 13(6): 1146-1149. [20] FRED A, GIRO C, MICHAEL F, et al. Automated maneuvering decisions for air-to-air combat[C]∥Proceedings of the Gui-dance, Navigation and Control Conference. Monterey, CA, US: AIAA, 1987:659-669. [21] 韩立群.人工神经网络[M]. 北京:北京邮电大学出版社, 2006:51-66. HAN L Q. Artificial neural network[M]. Beijing: Beijing University of Posts and Telecommunications Press, 2006:51-66.(in Chinese) [22] HE K M, ZHANG X Y, REN S Q, et al. Delving deep into rectifiers:surpassing human-level performance on imagenet classification[C]∥Proceedings of International Conference on Computer Vision. Santiago, Chile:IEEE, 2015:1026-1034. [23] MCGREW J S, HOW J P, WILLIAMS B. Air-combat strategy using approximate dynamic programming[J]. Journal of Gui-dance, Control, and Dynamics, 2010, 33(5):1641-1654. [24] SHAW R L. Fighter combat tactics and maneuvering[M]. Annapolis, MD, US: Naval Institute Press, 2007:10-13.
|