Acta Armamentarii ›› 2025, Vol. 46 ›› Issue (4): 240350-.doi: 10.12382/bgxb.2024.0350
Previous Articles Next Articles
SU Jiahao1, LIU Siyu1, LU Chunlei1, GUO Zhao1,*(), WANG Zhirui2,3, YAN Tong2,3, DANG Ruina2,3, SU Bo2,3
Received:
2024-05-08
Online:
2025-04-30
Contact:
GUO Zhao
CLC Number:
SU Jiahao, LIU Siyu, LU Chunlei, GUO Zhao, WANG Zhirui, YAN Tong, DANG Ruina, SU Bo. Design of a Discrete Series Elastic Actuated Spine for Quadruped Robots[J]. Acta Armamentarii, 2025, 46(4): 240350-.
Add to citation manager EndNote|Ris|BibTeX
i | θi/(°) | di/mm | αi/(°) | ∂i/mm |
---|---|---|---|---|
1 | d0 | ∂1 | ||
1' | θ1+90 | 90 | ||
2 | d1 | |||
3 | θ2 | d2 | -90 | |
4 | θ3 | d3 | ∂3 | |
5 | θ4-90 | ∂4 |
Table 1 Single leg D-H parameters
i | θi/(°) | di/mm | αi/(°) | ∂i/mm |
---|---|---|---|---|
1 | d0 | ∂1 | ||
1' | θ1+90 | 90 | ||
2 | d1 | |||
3 | θ2 | d2 | -90 | |
4 | θ3 | d3 | ∂3 | |
5 | θ4-90 | ∂4 |
下落高度mm | 有SEA峰值力矩/ (N·m) | 无SEA峰值 力矩/(N·m) | 减少百分比/% |
---|---|---|---|
200 | 6.97 | 13.30 | 47.6% |
400 | 8.78 | 17.93 | 51.0% |
600 | 9.10 | 21.76 | 58.2% |
Table 2 Experiments of torque buffering with SEA and without SEA in terms of peak torque
下落高度mm | 有SEA峰值力矩/ (N·m) | 无SEA峰值 力矩/(N·m) | 减少百分比/% |
---|---|---|---|
200 | 6.97 | 13.30 | 47.6% |
400 | 8.78 | 17.93 | 51.0% |
600 | 9.10 | 21.76 | 58.2% |
电机 | 有SEA脊柱 | 无SEA脊柱 | 有SEA脊柱峰值力矩减少百分比/% | |||||
---|---|---|---|---|---|---|---|---|
峰值 | 标准差 | 峰值 | 标准差 | |||||
前腿大腿 | 3.70 | -3.42 | 1.09 | 5.71 | -2.80 | 1.60 | 35.2 | |
前腿小腿 | 0.52 | -16.94 | 2.41 | 2.23 | -19.23 | 3.31 | 12.0 | |
后腿大腿 | 0.37 | -6.64 | 1.18 | 1.32 | -12.23 | 1.81 | 45.7 | |
后腿小腿 | 0.54 | -15.80 | 2.88 | 1.11 | -17.61 | 3.15 | 10.3 | |
脊柱 | 1.36 | -3.51 | 1.02 |
Table 3 Comparison of motor torque data with and without SEA spine N·m
电机 | 有SEA脊柱 | 无SEA脊柱 | 有SEA脊柱峰值力矩减少百分比/% | |||||
---|---|---|---|---|---|---|---|---|
峰值 | 标准差 | 峰值 | 标准差 | |||||
前腿大腿 | 3.70 | -3.42 | 1.09 | 5.71 | -2.80 | 1.60 | 35.2 | |
前腿小腿 | 0.52 | -16.94 | 2.41 | 2.23 | -19.23 | 3.31 | 12.0 | |
后腿大腿 | 0.37 | -6.64 | 1.18 | 1.32 | -12.23 | 1.81 | 45.7 | |
后腿小腿 | 0.54 | -15.80 | 2.88 | 1.11 | -17.61 | 3.15 | 10.3 | |
脊柱 | 1.36 | -3.51 | 1.02 |
[1] |
|
[2] |
|
[3] |
荣学文. SCalf 液压驱动四足机器人的机构设计与运动分析[D]. 济南: 山东大学, 2013.
|
|
|
[4] |
柴汇, 孟健, 荣学文, 等. 高性能液压驱动四足机器人 SCalf 的设计与实现[J]. 机器人, 2014, 36(4):385-391.
|
|
|
[5] |
Unitree Aliengo[EB/OL]. 杭州: 杭州宇树科技有限公司, 2019 (2019-05-20) [2024-10-21]. https://www.unitree.com/cn/aliengo.
|
Unitree Aliengo[EB/OL]. Hangzhou: Hangzhou Yushu Technology CO., LTD., 2019 (2019-05-20) [2024-10-21]. https://www.unitree.com/cn/aliengo. in Chinese)
|
|
[6] |
绝影 X30[EB/OL]. 杭州: 杭州云深处科技有限公司, 2023 (2023-10-09) [2024-10-21]. https://www.deeprobotics.cn/robot/index/product3.html.
|
Jueying X30[EB/OL]. Hangzhou: Hangzhou Yunshenchu Technology Co., Ltd., 2023 (2023-10-09) [2024-10-21]. https://www.deeprobotics.cn/robot/index/product3.html. in Chinese)
|
|
[7] |
|
[8] |
|
[9] |
|
[10] |
|
[11] |
|
[12] |
|
[13] |
|
[14] |
|
[15] |
|
[16] |
|
[17] |
|
[18] |
|
[19] |
|
[20] |
|
[21] |
张秀丽, 谭小康, 吴海波. 可变刚度的四足机器人被动柔顺脊柱设计与应用[J]. 北京交通大学学报, 2018, 42(6):111-118.
doi: 10.11860/j.issn.1673-0291.2018.06.016 |
doi: 10.11860/j.issn.1673-0291.2018.06.016 |
|
[22] |
雷静桃, 俞煌颖. 四足机器人气动人工肌肉驱动的仿生柔性机体动力学分析[J]. 上海交通大学学报, 2014, 48(12):1688-1693.
|
|
|
[23] |
|
[24] |
李庆中, 李晓丹, 于福杰, 等. 介电弹性体式蛙型仿生软体机器人设计[J]. 兵工学报, 2022, 43(1):140-147.
|
doi: 10.3969/j.issn.1000-1093.2022.01.015 |
|
[25] |
|
[26] |
|
[27] |
|
[28] |
廖峻北, 伊烁闻, 雷飞, 等. 连续变刚度仿生驱动关节的设计与建模分析[J]. 兵工学报, 2023, 44(11):3269-3278.
doi: 10.12382/bgxb.2023.0730 |
doi: 10.12382/bgxb.2023.0730 |
|
[29] |
刘思宇, 廖峻北, 雷飞, 等. 用于四足机器人的并联弹性腿足关节设计与优化[J]. 兵工学报, 2024, 44(增刊2):71-83.
|
doi: 10.12382/bgxb.2023.0897 |
|
[30] |
doi: 10.1038/s41598-021-88879-0 pmid: 33953253 |
[31] |
|
[32] |
|
[33] |
|
[34] |
蔡润斌. 四足机器人运动规划及协调控制[D]. 长沙: 国防科学技术大学, 2013.
|
|
|
[35] |
|
[1] | ZHAO Wei, WANG Feng, MA Xingyu, ZHAI Weiguang, MENG Pengshuai. Visual SLAM Algorithm Based on Dynamic Region Exclusion and Dense Map Construction [J]. Acta Armamentarii, 2025, 46(3): 240217-. |
[2] | DONG Mingze, WEN Zhuanglei, CHEN Xiai, YANG Jiongkun, ZENG Tao. Research on Robot Navigation Method Integrating Safe Convex Space and Deep Reinforcement Learning [J]. Acta Armamentarii, 2024, 45(12): 4372-4382. |
[3] | XING Boyang, XU Wei, LI Yufeng, ZHAO Haoyu, WANG Kang, YAN Tong. Model Predictive Control for Wheeled L-quadruped Robots Based on Hierarchical Decoupling [J]. Acta Armamentarii, 2024, 45(12): 4272-4282. |
[4] | LI Zhong, GUAN Xiaorong, LI Huibin, HE Long, LONG Yi. Research Status and Key Technology Analysis of Active Rigid Lower Limb Assisted Exoskeleton [J]. Acta Armamentarii, 2024, 45(S1): 262-270. |
[5] | Li Huibin, MA He, LIU Pengfei, YANG Peiying, GUAN Xiaorong. Current Development and Prospects of Wearable Supernumerary Robotic Limbs for Military Applications [J]. Acta Armamentarii, 2024, 45(S1): 287-295. |
[6] | DANG Wanying, ZHOU Lelai, LI Yibin, ZHANG Chen. Neural Network Planning Method for Optimal Off-road Configuration of Modular Robots [J]. Acta Armamentarii, 2024, 45(10): 3674-3685. |
[7] | SUN Pengyao, HUANG Yanyan, WANG Kaisheng. Two-dimensional Global Path Planning Based on Potential Field Enhanced Fireworks Algorithm [J]. Acta Armamentarii, 2024, 45(10): 3499-3518. |
[8] | CHEN Qi, QIN Guoyang. Trajectory Tracking Control for Hybrid-driven Unmanned Underwater Vehicles with Free-flying and Crawling Dual-mode [J]. Acta Armamentarii, 2024, 45(9): 3216-3229. |
[9] | LIU Yali, LU Yanchi, XU Xiaolong, SONG Qiuzhi. A Review of the Evaluation Methods of Assisting Effectiveness of Exoskeleton Robot and Its Applications [J]. Acta Armamentarii, 2024, 45(8): 2497-2519. |
[10] | PAN Zuodong, ZHOU Yue, GUO Wei, XU Gaofei, SUN Yu. Path Planning of Tidal Flat Tracked Vehicle Based on CB-RRT* Algorithm [J]. Acta Armamentarii, 2024, 45(4): 1117-1128. |
[11] | ZHANG Tianyi, ZHENG Ying, QIU Xinguo, JI Xingjian, JIN Xiaohang. Disturbance Compensation Strategy for Fifth-order Joint Servomechanism Based on Characteristic Model [J]. Acta Armamentarii, 2024, 45(1): 276-287. |
[12] | LIU Jiangtao, ZHOU Lelai, LI Yibin. Trajectory Tracking and Obstacle Avoidance Control of Six-wheel Independent Drive and Steering Robot in Complex Terrain [J]. Acta Armamentarii, 2024, 45(1): 166-183. |
[13] | YUE Shengzhe, WANG Zhengjie. A SLAM in Dynamic Environment Based on Instance Segmentation and Optical Flow [J]. Acta Armamentarii, 2024, 45(1): 156-165. |
[14] | SU Zhibao, XIANG Shen, YU Xuewei, AN Xuyang. A Simulation System for Cooperative Control of Autonomous Convoy [J]. Acta Armamentarii, 2023, 44(S2): 35-43. |
[15] | ZHAO Xijun, CUI Xing, LI Zhaodong, WANG Yiquan, YANG Yu. Adaptive Inter-vechile Distance Control for Unmanned Ground Vehicle Convoy [J]. Acta Armamentarii, 2023, 44(S2): 44-51. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||