Acta Armamentarii ›› 2024, Vol. 45 ›› Issue (1): 156-165.doi: 10.12382/bgxb.2023.0568
Previous Articles Next Articles
YUE Shengzhe, WANG Zhengjie*()
Received:
2023-06-13
Online:
2024-01-30
Contact:
WANG Zhengjie
CLC Number:
YUE Shengzhe, WANG Zhengjie. A SLAM in Dynamic Environment Based on Instance Segmentation and Optical Flow[J]. Acta Armamentarii, 2024, 45(1): 156-165.
Add to citation manager EndNote|Ris|BibTeX
编号 | ORB-SLAM2 | DYNA-SLAM | 本文算法 | |||
---|---|---|---|---|---|---|
RMSE | STD | RMSE | STD | RMSE | STD | |
sitting_static | 0.009 | 0.004 | 0.006 | 0.003 | 0.006 | 0.003 |
walking_static | 0.328 | 0.115 | 0.037 | 0.043 | 0.034 | 0.039 |
walking_xyz | 0.892 | 0.480 | 0.091 | 0.057 | 0.075 | 0.050 |
Table 1 Comparison of absolute trajectory errors in TUM datasets
编号 | ORB-SLAM2 | DYNA-SLAM | 本文算法 | |||
---|---|---|---|---|---|---|
RMSE | STD | RMSE | STD | RMSE | STD | |
sitting_static | 0.009 | 0.004 | 0.006 | 0.003 | 0.006 | 0.003 |
walking_static | 0.328 | 0.115 | 0.037 | 0.043 | 0.034 | 0.039 |
walking_xyz | 0.892 | 0.480 | 0.091 | 0.057 | 0.075 | 0.050 |
序列 | ORB-SLAM2 | 本文算法 | ||||||
---|---|---|---|---|---|---|---|---|
RMSE | Mean | Max | Min | RMSE | Mean | Max | Min | |
01 | 9.558 | 8.025 | 16.98 | 4.398 | 6.229 | 6.074 | 11.958 | 1.502 |
02 | 6.816 | 5.621 | 15.005 | 0.483 | 5.006 | 3.978 | 10.262 | 0.251 |
04 | 1.154 | 1.057 | 1.846 | 0.506 | 1.147 | 1.165 | 2.149 | 0.105 |
06 | 0.801 | 0.716 | 1.290 | 0.480 | 0.597 | 0.741 | 1.086 | 0.323 |
Table 3 Comparison of absolute pose errors in KITTI dataset
序列 | ORB-SLAM2 | 本文算法 | ||||||
---|---|---|---|---|---|---|---|---|
RMSE | Mean | Max | Min | RMSE | Mean | Max | Min | |
01 | 9.558 | 8.025 | 16.98 | 4.398 | 6.229 | 6.074 | 11.958 | 1.502 |
02 | 6.816 | 5.621 | 15.005 | 0.483 | 5.006 | 3.978 | 10.262 | 0.251 |
04 | 1.154 | 1.057 | 1.846 | 0.506 | 1.147 | 1.165 | 2.149 | 0.105 |
06 | 0.801 | 0.716 | 1.290 | 0.480 | 0.597 | 0.741 | 1.086 | 0.323 |
序列 | DYNA-SLAM | 本文方法 |
---|---|---|
00 | 3.505 | 2.853 |
01 | 9.003 | 8.720 |
02 | 5.219 | 4.723 |
03 | 1.299 | 1.195 |
04 | 1.591 | 1.292 |
05 | 1.779 | 1.499 |
06 | 0.824 | 0.721 |
07 | 2.489 | 2.232 |
08 | 3.291 | 2.965 |
09 | 2.564 | 2.181 |
10 | 2.743 | 2.276 |
Table 4 Comparison of absolute pose errors of algorithms of the same type
序列 | DYNA-SLAM | 本文方法 |
---|---|---|
00 | 3.505 | 2.853 |
01 | 9.003 | 8.720 |
02 | 5.219 | 4.723 |
03 | 1.299 | 1.195 |
04 | 1.591 | 1.292 |
05 | 1.779 | 1.499 |
06 | 0.824 | 0.721 |
07 | 2.489 | 2.232 |
08 | 3.291 | 2.965 |
09 | 2.564 | 2.181 |
10 | 2.743 | 2.276 |
[1] |
doi: 10.1109/TRO.2016.2624754 URL |
[2] |
doi: 10.1186/s41074-017-0027-2 |
[3] |
张福斌, 张炳烁, 杨玉帅. 基于单目/IMU/里程计融合的SLAM算法[J]. 兵工学报, 2022, 43(11):2810-2818.
|
doi: 10.12382/bgxb.2022.0240 |
|
[4] |
doi: 10.1109/TRO.2017.2705103 URL |
[5] |
刘全攀, 王正杰, 王寰. 基于双目视觉-惯性导航的轻型无人机导航算法[J]. 兵工学报, 2020, 41(增刊2):241-248.
|
|
|
[6] |
doi: 10.1109/TPAMI.2017.2658577 pmid: 28422651 |
[7] |
doi: 10.1016/j.robot.2016.11.012 URL |
[8] |
doi: 10.1109/LRA.2017.2724759 URL |
[9] |
|
[10] |
|
[11] |
doi: 10.1109/LSP.2016. URL |
[12] |
doi: 10.3390/ijgi9040202 URL |
[13] |
|
[14] |
|
[15] |
doi: 10.1109/Access.6287639 URL |
[16] |
|
[17] |
刘立涛, 聂亮. 合成孔径光学成像系统与图像复原技术[J]. 自动化技术与应用, 2021, 40(3): 96-101.
|
|
|
[18] |
doi: 10.1145/358669.358692 URL |
[19] |
doi: 10.1109/TPAMI.2018.2844175 pmid: 29994331 |
[20] |
|
[21] |
doi: 10.1002/rob.v23:01 URL |
[22] |
doi: 10.1016/j.spl.2020.108812 URL |
[23] |
doi: 10.1177/0278364906072768 URL |
[24] |
doi: 10.1177/0278364911430419 URL |
[25] |
|
[26] |
|
[27] |
doi: 10.1137/140954933 URL |
[1] | ZHAO Xijun, CUI Xing, LI Zhaodong, WANG Yiquan, YANG Yu. Adaptive Inter-vechile Distance Control for Unmanned Ground Vehicle Convoy [J]. Acta Armamentarii, 2023, 44(S2): 44-51. |
[2] | XU Peng, ZHAO Jianxin, FAN Wenhui, QIU Tianqi, JIANG Lei, LIANG Zhenjie, LIU Yufei. Specific Complex Locomotion Skills Control for Quadruped Robots [J]. Acta Armamentarii, 2023, 44(S2): 135-145. |
[3] | ZHOU Qiu, ZHOU Yue, SUN Hongming, GUO Wei, WU Kai, LAN Yanjun. Path Planning and Tracking Control Method of Deep-Sea Landing Vehicle [J]. Acta Armamentarii, 2023, 44(1): 298-306. |
[4] | ZHANG Fubing, ZHANG Bingshuo, YANG Yushuai. SLAM Algorithm Based on Monocular/IMU/Odometer Fusion [J]. Acta Armamentarii, 2022, 43(11): 2810-2817. |
[5] | LI Qingzhong, LI Xiaodan, YU Fujie, CHEN Yuan. Dielectric Elastomer-driven Frog-shaped Bionic Soft Robot [J]. Acta Armamentarii, 2022, 43(1): 140-147. |
[6] | YAN Hao, WANG Hongbo, CHEN Peng, ZHANG Leilei, LI Yungui. Optimal Design of an Upper Limb Rehabilitation Robot with Generalized Shoulder Joint [J]. Acta Armamentarii, 2021, 42(11): 2491-2502. |
[7] | YAN Yinpo, YU Fujie, CHEN Yuan. Hydrodynamic Coefficients Calculation and Dynamic Modeling of an Open-frame Underwater Robot [J]. Acta Armamentarii, 2021, 42(9): 1972-1986. |
[8] | ZHANG Chaosheng, WANG Jian, ZHANG Lin, WANG Ya. A Multi-agent System Flocking Model with Obstacle Avoidance in Complex Obstacle Field [J]. Acta Armamentarii, 2021, 42(1): 141-150. |
[9] | ZHANG Fubin, LIN Jiayun. Integrated Navigation Algorithm of Depth Camera/MEMS IMU [J]. Acta Armamentarii, 2021, 42(1): 159-166. |
[10] | JING Anyan, SHE Huqing. Neural Network Observer-based Output Attitude Control of a Towed Underwater Vehicle [J]. Acta Armamentarii, 2020, 41(12): 2504-2513. |
[11] | SUN Pengyao, HUANG Yanyan, PAN Yao. Path Planning of Mobile Robots Based on Improved Potential Field Algorithm [J]. Acta Armamentarii, 2020, 41(10): 2106-2121. |
[12] | ZHENG Rong, XIN Chuanlong, TANG Zhong, SONG Tao. Review on the Platform Technology of Autonomous Deployment of AUV by USV [J]. Acta Armamentarii, 2020, 41(8): 1675-1687. |
[13] | SANG Donghui, CHEN Yuan, GAO Jun. Gait Planning and Stability Analysis of a Quadruped Robot with 2-DOF Parallel Hip and Spine Joints [J]. Acta Armamentarii, 2020, 41(6): 1188-1200. |
[14] | CHEN Jianhua, LI Ye, WANG Qi, MU Xihui. Research on Impedance Self-adjusting Control of Lower Extremity Exoskeleton during Support Phase Based onHuman Motion Ability [J]. Acta Armamentarii, 2020, 41(6): 1201-1209. |
[15] | WANG Lidong, CHEN Yuan. Kinematic Modeling and Collision Interference Detection of Cable-driven Rigid-flexible Wave Motion Compensation Mechanism [J]. Acta Armamentarii, 2020, 41(4): 737-749. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||