Acta Armamentarii ›› 2023, Vol. 44 ›› Issue (10): 3115-3126.doi: 10.12382/bgxb.2022.0510
Previous Articles Next Articles
DING Bosheng, ZHANG Ruiheng*(), XU Lixin, CHEN Huiming
Received:
2022-06-10
Online:
2023-10-30
Contact:
ZHANG Ruiheng
CLC Number:
DING Bosheng, ZHANG Ruiheng, XU Lixin, CHEN Huiming. Sand-dust Image Restoration Using Gray Compensation and Feature Fusion[J]. Acta Armamentarii, 2023, 44(10): 3115-3126.
Add to citation manager EndNote|Ris|BibTeX
层 | 输入 | 输出 | 卷积核尺寸 | 滑动步长 | 填充圈数 |
---|---|---|---|---|---|
卷积层1 | 6 | 64 | 7 | 1 | |
下卷积2 | 64 | 128 | 3 | 2 | 1 |
下卷积3 | 128 | 256 | 3 | 2 | 1 |
残差1~9 | 256 | 256 | 3 | 1 | |
上卷积4 | 256 | 128 | 3 | 1/2 | 1 |
上卷积5 | 128 | 64 | 3 | 1/2 | 1 |
Table 1 Encoding-decoding network parameter settings
层 | 输入 | 输出 | 卷积核尺寸 | 滑动步长 | 填充圈数 |
---|---|---|---|---|---|
卷积层1 | 6 | 64 | 7 | 1 | |
下卷积2 | 64 | 128 | 3 | 2 | 1 |
下卷积3 | 128 | 256 | 3 | 2 | 1 |
残差1~9 | 256 | 256 | 3 | 1 | |
上卷积4 | 256 | 128 | 3 | 1/2 | 1 |
上卷积5 | 128 | 64 | 3 | 1/2 | 1 |
层 | 输入 | 输出 | 卷积核尺寸 | 滑动步长 | 填充圈数 |
---|---|---|---|---|---|
卷积1 | 3 | 64 | 4 | 2 | 1 |
卷积2 | 64 | 128 | 4 | 2 | 1 |
卷积3 | 128 | 256 | 4 | 2 | 1 |
卷积4 | 256 | 512 | 4 | 1 | 1 |
卷积5 | 512 | 1 | 4 | 1 | 1 |
Table 2 Discriminator network parameter settings
层 | 输入 | 输出 | 卷积核尺寸 | 滑动步长 | 填充圈数 |
---|---|---|---|---|---|
卷积1 | 3 | 64 | 4 | 2 | 1 |
卷积2 | 64 | 128 | 4 | 2 | 1 |
卷积3 | 128 | 256 | 4 | 2 | 1 |
卷积4 | 256 | 512 | 4 | 1 | 1 |
卷积5 | 512 | 1 | 4 | 1 | 1 |
参数 | 沙尘图像 | CCH[ | STME[ | DCP[ | VRB[ | Refine-Net[ | Cycle-GAN[ | CAL[ | YUV[ | 本文方法 |
---|---|---|---|---|---|---|---|---|---|---|
SSIM | 0.5557 | 0.5934 | 0.513 | 0.5897 | 0.5953 | 0.613 | 0.5981 | 0.5885 | 0.615 | 0.7433 |
PSNR | 10.9907 | 12.1304 | 11.805 | 11.2573 | 12.9054 | 16.855 | 13.5896 | 12.356 | 15.64 | 20.1885 |
Table 3 Quantitative evaluation of different methods on TestA dataset
参数 | 沙尘图像 | CCH[ | STME[ | DCP[ | VRB[ | Refine-Net[ | Cycle-GAN[ | CAL[ | YUV[ | 本文方法 |
---|---|---|---|---|---|---|---|---|---|---|
SSIM | 0.5557 | 0.5934 | 0.513 | 0.5897 | 0.5953 | 0.613 | 0.5981 | 0.5885 | 0.615 | 0.7433 |
PSNR | 10.9907 | 12.1304 | 11.805 | 11.2573 | 12.9054 | 16.855 | 13.5896 | 12.356 | 15.64 | 20.1885 |
参数 | 沙尘图像 | CCH[ | STME[ | DCP[ | VRB[ | Refine-Net[ | Cycle-GAN[ | CAL[ | YUV[ | 本文方法 |
---|---|---|---|---|---|---|---|---|---|---|
NIQE | 5.8695 | 6.2191 | 5.1063 | 5.6189 | 5.0804 | 5.141 | 6.0423 | 6.056 | 5.053 | 5.019 |
e | 0.5683 | 0.753 | 1.099 | 0.3543 | 0.645 | 0.6381 | 0.554 | 0.736 | 1.3871 | |
0.6343 | 1.44 | 1.141 | 1.0826 | 1.387 | 1.5056 | 0.731 | 1.38 | 2.079 |
Table 4 Quantitative evaluation of different methods on TestB dataset
参数 | 沙尘图像 | CCH[ | STME[ | DCP[ | VRB[ | Refine-Net[ | Cycle-GAN[ | CAL[ | YUV[ | 本文方法 |
---|---|---|---|---|---|---|---|---|---|---|
NIQE | 5.8695 | 6.2191 | 5.1063 | 5.6189 | 5.0804 | 5.141 | 6.0423 | 6.056 | 5.053 | 5.019 |
e | 0.5683 | 0.753 | 1.099 | 0.3543 | 0.645 | 0.6381 | 0.554 | 0.736 | 1.3871 | |
0.6343 | 1.44 | 1.141 | 1.0826 | 1.387 | 1.5056 | 0.731 | 1.38 | 2.079 |
输入图像 | ICB | ICE | ICB+ICE |
---|---|---|---|
PSNR | 18.45 | 17.25 | 20.1885 |
SSIM | 0.492 | 0.625 | 0.7433 |
Table 8 Impact analysis of derived inputs
输入图像 | ICB | ICE | ICB+ICE |
---|---|---|---|
PSNR | 18.45 | 17.25 | 20.1885 |
SSIM | 0.492 | 0.625 | 0.7433 |
损失函数 | LA | LA+LC | LA+LP | LA+LP+LC |
---|---|---|---|---|
PSNR | 9.4868 | 19.2175 | 15.701 | 20.1885 |
SSIM | 0.0979 | 0.7195 | 0.673 | 0.7433 |
Table 9 Quantitative analysis of different loss functions
损失函数 | LA | LA+LC | LA+LP | LA+LP+LC |
---|---|---|---|---|
PSNR | 9.4868 | 19.2175 | 15.701 | 20.1885 |
SSIM | 0.0979 | 0.7195 | 0.673 | 0.7433 |
序号 | 方法 | 运行平台 | 运行时间/s |
---|---|---|---|
1 | DCP | 数字仿真软件(CPU) | 2.266 |
2 | CCH | 数字仿真软件(CPU) | 1.280 |
3 | Refine-Net | Pytorch软件(GPU) | 0.415 |
4 | Cycle-GAN | TensorFlow软件(GPU) | 0.533 |
5 | 本文方法 | Pytorch软件(GPU) | 0.124 |
Table 13 Average running time of image restoration methods
序号 | 方法 | 运行平台 | 运行时间/s |
---|---|---|---|
1 | DCP | 数字仿真软件(CPU) | 2.266 |
2 | CCH | 数字仿真软件(CPU) | 1.280 |
3 | Refine-Net | Pytorch软件(GPU) | 0.415 |
4 | Cycle-GAN | TensorFlow软件(GPU) | 0.533 |
5 | 本文方法 | Pytorch软件(GPU) | 0.124 |
[1] |
吴青青, 许廷发, 闫辉, 等. 复杂背景下的颜色分离背景差分目标检测方法[J]. 兵工学报, 2013, 34(4): 501-506.
doi: 10. 3969/ j. issn. 1000-1093. 2013. 04. 019 |
|
|
[2] |
马月红, 孔梦瑶. 基于改进快速区域卷积网络的目标检测轻量化算法[J]. 兵工学报, 2021, 42(12): 2664-2674.
doi: 10.3969/j.issn.1000-1093.2021.12.014 |
doi: 10.3969/j.issn.1000-1093.2021.12.014 |
|
[3] |
doi: 10.1109/JAS.2020.1003423 URL |
[4] |
doi: 10.1109/Access.6287639 URL |
[5] |
doi: 10.1109/Access.6287639 URL |
[6] |
|
[7] |
doi: 10.1007/s11045-019-00678-z |
[8] |
doi: 10.1109/TPAMI.2010.168 pmid: 20820075 |
[9] |
doi: 10.1109/Access.6287639 URL |
[10] |
doi: 10.1109/TIP.83 URL |
[11] |
于博文, 吕明. 改进的YOLOv3算法及其在军事目标检测中的应用[J]. 兵工学报, 2022, 43(2): 345-354.
doi: 10.3969/j.issn.1000-1093.2022.02.012 |
doi: 10.3969/j.issn.1000-1093.2022.02.012 |
|
[12] |
薛灵芝, 曾向阳, 杨爽. 基于生成对抗网络的水声目标识别算法[J]. 兵工学报, 2021, 42(11): 2444-2452.
doi: 10.3969/j.issn.1000-1093.2021.11.018 |
doi: 10.3969/j.issn.1000-1093.2021.11.018 |
|
[13] |
|
[14] |
|
[15] |
pmid: 23674449 |
[16] |
|
[17] |
|
[18] |
doi: 10.1109/LSP.2012.2227726 URL |
[19] |
|
[20] |
doi: 10.1049/ipr2.v14.4 URL |
[21] |
doi: 10.1016/j.ijleo.2020.165659 URL |
[22] |
doi: 10.1109/TIP.83 URL |
[23] |
|
[24] |
|
[1] | SONG Xiaoru, LIU Kang, GAO Song, CHEN Chaobo, YAN Kun. Research on Improved YOLOv5-based Military Target Recognition Algorithm Used in Complex Battlefield Environment [J]. Acta Armamentarii, 2024, 45(3): 934-947. |
[2] | HUI Kanghua, YANG Wei, LIU Haohan, ZHANG Zhi, ZHENG Jin, BAI Xiao. Enhanced Multi-scale Target Detection Method Based on YOLOv5 [J]. Acta Armamentarii, 2023, 44(9): 2600-2610. |
[3] | ZHAO Xiaodong, ZHANG Xunying. Optimization Algorithm of Autonomous Target Recognition for Unmanned Vehicles Based on YOLOv5 [J]. Acta Armamentarii, 2023, 44(9): 2732-2744. |
[4] | WU Liyang, GUO Pengcheng, LIU Chao, LI Wenqiang. Radar Signal Modulation Type Recognition Based on Attention Mechanism Enhanced Residual Networks [J]. Acta Armamentarii, 2023, 44(8): 2310-2318. |
[5] | ZHOU Yu, CAO Ronggang, LI Ping, MA Xiao. A Fuze Burst Point Detection Method for Outfield Test Images [J]. Acta Armamentarii, 2023, 44(8): 2453-2464. |
[6] | LIU Bing, HAO Xinhong, ZHOU Wen, YANG Jin. Recognition Method of Target and Sweep Jamming Signal for FM Radio Fuze Based on BAS-BPNN [J]. Acta Armamentarii, 2023, 44(8): 2391-2403. |
[7] | LIU Yi, REN Jihuan, WU Xiang, BO Yuming. Newly Equipped Armored Vehicle Classification Based on Integrated Transfer Learning [J]. Acta Armamentarii, 2023, 44(8): 2319-2328. |
[8] | CHEN Xiongfeng, RUAN Chi. Underwater Polarization Image Restoration Method Using Optimal Multi-Parameters Reconstruction [J]. Acta Armamentarii, 2023, 44(7): 2122-2131. |
[9] | HE Jincheng, HAN Yongcheng, ZHANG Wenwen, HE Weiji, CHEN Qian. True Color Low-Light Image Enhancement Based on Channel-Calibrated Convolution [J]. Acta Armamentarii, 2023, 44(6): 1643-1654. |
[10] | LIU Jia, LIU Hai’ou, CHEN Huiyan, MAO Feihong. Road Types Identification Method of Unmanned Tracked Vehicles Based on Fusion Features [J]. Acta Armamentarii, 2023, 44(5): 1267-1276. |
[11] | WANG Jian, ZHANG Bangning, ZHANG Jie, WEI Guofeng, GUO Daoxing. A Method for Specific Communication Emitter Identification Based on Multi-Domain Feature Fusion [J]. Acta Armamentarii, 2023, 44(4): 949-959. |
[12] | HUO Jian, CHEN Huimin, MA Yunfei, GUO Pengyu, YANG Xu, MENG Xiangsheng. Vehicle Target Recognition Algorithm Based on MEMS LiDAR [J]. Acta Armamentarii, 2023, 44(4): 940-948. |
[13] | ZHANG Liang'an, CHEN Yang, XIE Shenglong, LIU Tongxin. Crack Detection System for Aircraft Protective Grill based on Machine Vision and Deep Learning [J]. Acta Armamentarii, 2023, 44(2): 507-516. |
[14] | WANG Shu-guang, ZENG Xiang-yang, WANG Zheng, WANG Qiang. Gammatone Subband Denoising and HHT-based Feature Extraction for Underwater Targets [J]. Acta Armamentarii, 2015, 36(9): 1704-1709. |
[15] | LI Cheng, LI Jian-xun, TONG Zhong-xiang, JIA Lin-tong, ZHANG Zhi-bo. Research on Partial Image Recognition and Tracking in Infrared Imaging Terminal Guidance [J]. Acta Armamentarii, 2015, 36(7): 1213-1221. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||