Acta Armamentarii ›› 2023, Vol. 44 ›› Issue (9): 2732-2744.doi: 10.12382/bgxb.2022.1161
Special Issue: 智能系统与装备技术
Previous Articles Next Articles
ZHAO Xiaodong, ZHANG Xunying*()
Received:
2022-11-30
Online:
2023-04-19
Contact:
ZHANG Xunying
CLC Number:
ZHAO Xiaodong, ZHANG Xunying. Optimization Algorithm of Autonomous Target Recognition for Unmanned Vehicles Based on YOLOv5[J]. Acta Armamentarii, 2023, 44(9): 2732-2744.
Add to citation manager EndNote|Ris|BibTeX
算法 | 像素 | 参数量/106 | FLOPs/109 |
---|---|---|---|
YOLOv5s | 416×416 | 7.2 | 6.9 |
YOLOv5m | 416×416 | 21.2 | 20.7 |
YOLOv5l | 416×416 | 46.5 | 46.1 |
YOLOv5x | 416×416 | 86.7 | 86.8 |
Table 1 Parameters and calculation quantities for the YOLOv5 network
算法 | 像素 | 参数量/106 | FLOPs/109 |
---|---|---|---|
YOLOv5s | 416×416 | 7.2 | 6.9 |
YOLOv5m | 416×416 | 21.2 | 20.7 |
YOLOv5l | 416×416 | 46.5 | 46.1 |
YOLOv5x | 416×416 | 86.7 | 86.8 |
CSP编号 | 网络类型 | |||
---|---|---|---|---|
YOLOv5s | YOLOv5m | YOLOv5l | YOLOv5x | |
CSP1_1 | 1 | 2 | 3 | 4 |
CSP1_2 | 3 | 6 | 9 | 12 |
CSP1_3 | 3 | 6 | 9 | 12 |
CSP2_1 | 1 | 2 | 3 | 4 |
CSP2_2 | 1 | 2 | 3 | 4 |
CSP2_3 | 1 | 2 | 3 | 4 |
CSP2_4 | 1 | 2 | 3 | 4 |
CSP2_5 | 1 | 2 | 3 | 4 |
Table 2 Configuration table of residual units in CSPX components
CSP编号 | 网络类型 | |||
---|---|---|---|---|
YOLOv5s | YOLOv5m | YOLOv5l | YOLOv5x | |
CSP1_1 | 1 | 2 | 3 | 4 |
CSP1_2 | 3 | 6 | 9 | 12 |
CSP1_3 | 3 | 6 | 9 | 12 |
CSP2_1 | 1 | 2 | 3 | 4 |
CSP2_2 | 1 | 2 | 3 | 4 |
CSP2_3 | 1 | 2 | 3 | 4 |
CSP2_4 | 1 | 2 | 3 | 4 |
CSP2_5 | 1 | 2 | 3 | 4 |
数据集 | 裁剪 比率/% | 精度mAP(变化幅度/%) | |||
---|---|---|---|---|---|
红外未裁剪0.9882 | 可见光未裁剪0.9215 | ||||
文献[ | ReLU+Sigmoid | Mish+Sigmoid | |||
红外 数据集 | 20 | 0.9897 (+0.152) | 0.9903 (+0.213) | 0.9915 (+0.334) | |
30 | 0.9848 (-0.344) | 0.9855 (-0.273) | 0.9861 (-0.213) | ||
40 | 0.9842 (-0.405) | 0.9851 (-0.314) | 0.9858 (-0.243) | ||
可见光 数据集 | 20 | 0.9244 (+0.315) | 0.9251 (+0.39) | 0.9258 (+0.467) | |
30 | 0.9238 (+0.25) | 0.9243 (+0.304) | 0.9253 (+0.412) | ||
40 | 0.9218 (+0.033) | 0.9225 (+0.109) | 0.9229 (+0.152) |
Table 3 Comparison of recognition accuracy before and after YOLOv5x network pruning
数据集 | 裁剪 比率/% | 精度mAP(变化幅度/%) | |||
---|---|---|---|---|---|
红外未裁剪0.9882 | 可见光未裁剪0.9215 | ||||
文献[ | ReLU+Sigmoid | Mish+Sigmoid | |||
红外 数据集 | 20 | 0.9897 (+0.152) | 0.9903 (+0.213) | 0.9915 (+0.334) | |
30 | 0.9848 (-0.344) | 0.9855 (-0.273) | 0.9861 (-0.213) | ||
40 | 0.9842 (-0.405) | 0.9851 (-0.314) | 0.9858 (-0.243) | ||
可见光 数据集 | 20 | 0.9244 (+0.315) | 0.9251 (+0.39) | 0.9258 (+0.467) | |
30 | 0.9238 (+0.25) | 0.9243 (+0.304) | 0.9253 (+0.412) | ||
40 | 0.9218 (+0.033) | 0.9225 (+0.109) | 0.9229 (+0.152) |
数据集 | 算法 | 裁剪比率/% | 参数量/106 | 参数量裁剪率/% | FLOPs/109 | 计算量裁剪率/% |
---|---|---|---|---|---|---|
未裁剪 | 86.7 | 86.8 | ||||
文献[19]算法 | 20 | 68.6 | 20.9 | 73.1 | 15.8 | |
ReLU+Sigmoid | 20 | 66.3 | 23.5 | 71.7 | 17.4 | |
Mish +Sigmoid | 20 | 64.5 | 25.6 | 70.6 | 18.7 | |
红外数据集 | 文献[19]算法 | 30 | 63.1 | 27.2 | 67.4 | 22.4 |
ReLU+Sigmoid | 30 | 60.6 | 30.1 | 66.2 | 23.7 | |
Mish +Sigmoid | 30 | 58.7 | 32.3 | 65.0 | 25.1 | |
文献[19]算法 | 40 | 57.3 | 33.9 | 60.4 | 30.4 | |
ReLU+Sigmoid | 40 | 55.7 | 35.8 | 59.1 | 31.9 | |
Mish +Sigmoid | 40 | 54.9 | 36.7 | 58.5 | 32.6 | |
未裁剪 | 86.7 | — | 86.8 | — | ||
文献[19]算法 | 20 | 69.3 | 20.1 | 74.4 | 14.3 | |
ReLU+Sigmoid | 20 | 66.7 | 23.1 | 72.3 | 16.7 | |
Mish+Sigmoid | 20 | 65.3 | 24.7 | 71.1 | 18.1 | |
可见光数据集 | 文献[19]算法 | 30 | 63.7 | 26.5 | 68.2 | 21.4 |
ReLU+Sigmoid | 30 | 61.3 | 29.3 | 66.7 | 23.2 | |
Mish+Sigmoid | 30 | 59.2 | 31.7 | 65.9 | 24.1 | |
文献[19]算法 | 40 | 58.0 | 33.1 | 61.2 | 29.5 | |
ReLU+Sigmoid | 40 | 56.2 | 35.2 | 59.5 | 31.5 | |
Mish+Sigmoid | 40 | 55.4 | 36.1 | 58.8 | 32.3 |
Table 4 Comparison of parameter quantity and calculation quantity before and after YOLOv5x network pruning
数据集 | 算法 | 裁剪比率/% | 参数量/106 | 参数量裁剪率/% | FLOPs/109 | 计算量裁剪率/% |
---|---|---|---|---|---|---|
未裁剪 | 86.7 | 86.8 | ||||
文献[19]算法 | 20 | 68.6 | 20.9 | 73.1 | 15.8 | |
ReLU+Sigmoid | 20 | 66.3 | 23.5 | 71.7 | 17.4 | |
Mish +Sigmoid | 20 | 64.5 | 25.6 | 70.6 | 18.7 | |
红外数据集 | 文献[19]算法 | 30 | 63.1 | 27.2 | 67.4 | 22.4 |
ReLU+Sigmoid | 30 | 60.6 | 30.1 | 66.2 | 23.7 | |
Mish +Sigmoid | 30 | 58.7 | 32.3 | 65.0 | 25.1 | |
文献[19]算法 | 40 | 57.3 | 33.9 | 60.4 | 30.4 | |
ReLU+Sigmoid | 40 | 55.7 | 35.8 | 59.1 | 31.9 | |
Mish +Sigmoid | 40 | 54.9 | 36.7 | 58.5 | 32.6 | |
未裁剪 | 86.7 | — | 86.8 | — | ||
文献[19]算法 | 20 | 69.3 | 20.1 | 74.4 | 14.3 | |
ReLU+Sigmoid | 20 | 66.7 | 23.1 | 72.3 | 16.7 | |
Mish+Sigmoid | 20 | 65.3 | 24.7 | 71.1 | 18.1 | |
可见光数据集 | 文献[19]算法 | 30 | 63.7 | 26.5 | 68.2 | 21.4 |
ReLU+Sigmoid | 30 | 61.3 | 29.3 | 66.7 | 23.2 | |
Mish+Sigmoid | 30 | 59.2 | 31.7 | 65.9 | 24.1 | |
文献[19]算法 | 40 | 58.0 | 33.1 | 61.2 | 29.5 | |
ReLU+Sigmoid | 40 | 56.2 | 35.2 | 59.5 | 31.5 | |
Mish+Sigmoid | 40 | 55.4 | 36.1 | 58.8 | 32.3 |
压缩优化方式 | 精度mAP | 变化幅度/% | 单线程 | 双线程 | ||
---|---|---|---|---|---|---|
延时/ms | 帧频/(帧·s-1) | 延时/ms | 帧频/(帧·s-1) | |||
未压缩(原始网络) | 0.9882 | 0 | 1205 | 0.83 | 746 | 1.34 |
未裁剪+INT8量化 | 0.9904 | +0.223 | 329 | 3.04 | 199 | 5.03 |
未裁剪+INQ量化[ | 0.9873 | -0.091 | 412 | 2.43 | 242 | 4.13 |
裁剪20%(ReLU+Sigmoid)+INT8量化 | 0.9896 | +0.142 | 128 | 7.81 | 72 | 13.89 |
裁剪20%(Mish+Sigmoid)+INT8量化 | 0.9901 | +0.192 | 125 | 8.00 | 70 | 14.29 |
裁剪20%[ | 0.9893 | +0.111 | 133 | 7.52 | 75 | 13.33 |
裁剪20%[ | 0.9865 | -0.172 | 141 | 7.09 | 78 | 12.82 |
裁剪30%(ReLU+Sigmoid)+INT8量化 | 0.9860 | -0.223 | 97 | 10.31 | 51 | 19.61 |
裁剪30%(Mish+Sigmoid)+INT8量化 | 0.9866 | -0.162 | 91 | 10.99 | 49 | 20.41 |
裁剪30%[ | 0.9857 | -0.253 | 96 | 10.42 | 53 | 18.87 |
裁剪30%[ | 0.9843 | -0.395 | 105 | 9.52 | 55 | 18.18 |
裁剪40%(ReLU+Sigmoid)+ INT8量化 | 0.9841 | -0.415 | 81 | 12.35 | 40 | 25.00 |
裁剪40%(Mish+Sigmoid)+ INT8量化 | 0.9845 | -0.374 | 77 | 13.00 | 39 | 25.64 |
裁剪40%[ | 0.9838 | -0.445 | 82 | 12.20 | 41 | 24.39 |
裁剪40%[ | 0.9823 | -0.597 | 87 | 11.49 | 42 | 23.81 |
Table 5 Comparison of indicators before and after network compression optimization of infrared dataset
压缩优化方式 | 精度mAP | 变化幅度/% | 单线程 | 双线程 | ||
---|---|---|---|---|---|---|
延时/ms | 帧频/(帧·s-1) | 延时/ms | 帧频/(帧·s-1) | |||
未压缩(原始网络) | 0.9882 | 0 | 1205 | 0.83 | 746 | 1.34 |
未裁剪+INT8量化 | 0.9904 | +0.223 | 329 | 3.04 | 199 | 5.03 |
未裁剪+INQ量化[ | 0.9873 | -0.091 | 412 | 2.43 | 242 | 4.13 |
裁剪20%(ReLU+Sigmoid)+INT8量化 | 0.9896 | +0.142 | 128 | 7.81 | 72 | 13.89 |
裁剪20%(Mish+Sigmoid)+INT8量化 | 0.9901 | +0.192 | 125 | 8.00 | 70 | 14.29 |
裁剪20%[ | 0.9893 | +0.111 | 133 | 7.52 | 75 | 13.33 |
裁剪20%[ | 0.9865 | -0.172 | 141 | 7.09 | 78 | 12.82 |
裁剪30%(ReLU+Sigmoid)+INT8量化 | 0.9860 | -0.223 | 97 | 10.31 | 51 | 19.61 |
裁剪30%(Mish+Sigmoid)+INT8量化 | 0.9866 | -0.162 | 91 | 10.99 | 49 | 20.41 |
裁剪30%[ | 0.9857 | -0.253 | 96 | 10.42 | 53 | 18.87 |
裁剪30%[ | 0.9843 | -0.395 | 105 | 9.52 | 55 | 18.18 |
裁剪40%(ReLU+Sigmoid)+ INT8量化 | 0.9841 | -0.415 | 81 | 12.35 | 40 | 25.00 |
裁剪40%(Mish+Sigmoid)+ INT8量化 | 0.9845 | -0.374 | 77 | 13.00 | 39 | 25.64 |
裁剪40%[ | 0.9838 | -0.445 | 82 | 12.20 | 41 | 24.39 |
裁剪40%[ | 0.9823 | -0.597 | 87 | 11.49 | 42 | 23.81 |
压缩优化方式 | 精度mAP | 变化幅度/% | 单线程 | 双线程 | ||
---|---|---|---|---|---|---|
延时/ms | 帧频/(帧·s-1) | 延时/ms | 帧频/(帧·s-1) | |||
未压缩(原始网络) | 0.9215 | 0 | 1234 | 0.81 | 757 | 1.32 |
未裁剪+INT8量化 | 0.9238 | +0.250 | 335 | 2.99 | 202 | 4.95 |
未裁剪+INQ量化[ | 0.9223 | +0.087 | 425 | 2.35 | 249 | 4.02 |
裁剪20%(ReLU+Sigmoid)+INT8量化 | 0.9242 | +0.293 | 131 | 7.63 | 74 | 13.51 |
裁剪20%(Mish+Sigmoid)+INT8量化 | 0.9247 | +0.347 | 126 | 7.94 | 71 | 14.08 |
裁剪20%[ | 0.9236 | +0.228 | 138 | 7.25 | 77 | 13.00 |
裁剪20%[ | 0.9211 | +0.043 | 145 | 6.90 | 79 | 12.66 |
裁剪30%(ReLU+Sigmoid)+INT8量化 | 0.9231 | +0.174 | 99 | 10.10 | 52 | 19.23 |
裁剪30%(Mish+Sigmoid)+INT8量化 | 0.9250 | +0.380 | 93 | 10.75 | 50 | 20.00 |
裁剪30%[ | 0.9228 | +0.141 | 99 | 10.10 | 54 | 18.52 |
裁剪30%[ | 0.9201 | -0.152 | 107 | 9.35 | 57 | 17.54 |
裁剪40%(ReLU+Sigmoid)+ INT8量化 | 0.9208 | -0.076 | 82 | 12.20 | 40 | 25.00 |
裁剪40%(Mish+Sigmoid)+ INT8量化 | 0.9221 | +0.065 | 79 | 12.66 | 39 | 25.64 |
裁剪40%[ | 0.9201 | -0.152 | 83 | 12.05 | 42 | 23.81 |
裁剪40%[ | 0.9193 | -0.239 | 89 | 11.24 | 43 | 23.26 |
Table 6 Comparison of indicators before and after network compression optimization of visible light dataset
压缩优化方式 | 精度mAP | 变化幅度/% | 单线程 | 双线程 | ||
---|---|---|---|---|---|---|
延时/ms | 帧频/(帧·s-1) | 延时/ms | 帧频/(帧·s-1) | |||
未压缩(原始网络) | 0.9215 | 0 | 1234 | 0.81 | 757 | 1.32 |
未裁剪+INT8量化 | 0.9238 | +0.250 | 335 | 2.99 | 202 | 4.95 |
未裁剪+INQ量化[ | 0.9223 | +0.087 | 425 | 2.35 | 249 | 4.02 |
裁剪20%(ReLU+Sigmoid)+INT8量化 | 0.9242 | +0.293 | 131 | 7.63 | 74 | 13.51 |
裁剪20%(Mish+Sigmoid)+INT8量化 | 0.9247 | +0.347 | 126 | 7.94 | 71 | 14.08 |
裁剪20%[ | 0.9236 | +0.228 | 138 | 7.25 | 77 | 13.00 |
裁剪20%[ | 0.9211 | +0.043 | 145 | 6.90 | 79 | 12.66 |
裁剪30%(ReLU+Sigmoid)+INT8量化 | 0.9231 | +0.174 | 99 | 10.10 | 52 | 19.23 |
裁剪30%(Mish+Sigmoid)+INT8量化 | 0.9250 | +0.380 | 93 | 10.75 | 50 | 20.00 |
裁剪30%[ | 0.9228 | +0.141 | 99 | 10.10 | 54 | 18.52 |
裁剪30%[ | 0.9201 | -0.152 | 107 | 9.35 | 57 | 17.54 |
裁剪40%(ReLU+Sigmoid)+ INT8量化 | 0.9208 | -0.076 | 82 | 12.20 | 40 | 25.00 |
裁剪40%(Mish+Sigmoid)+ INT8量化 | 0.9221 | +0.065 | 79 | 12.66 | 39 | 25.64 |
裁剪40%[ | 0.9201 | -0.152 | 83 | 12.05 | 42 | 23.81 |
裁剪40%[ | 0.9193 | -0.239 | 89 | 11.24 | 43 | 23.26 |
数据集 | 压缩方式 | 参数量/106 | 硬件算力GOPs/109s | |
---|---|---|---|---|
单线程 | 双线程 | |||
裁剪20%(ReLU+Sigmoid)+ INT8量化 | 61.1 | 560.2 | 995.8 | |
裁剪20%(Mish+Sigmoid)+INT8量化 | 59.1 | 564.8 | 1008.6 | |
裁剪20%[ | 63.8 | 518.4 | 937.2 | |
裁剪30%(ReLU+Sigmoid)+INT8量化 | 55.5 | 682.5 | 1298.0 | |
红外数据集 | 裁剪30%(Mish+Sigmoid)+INT8量化 | 53.4 | 714.3 | 1326.5 |
裁剪30%[ | 58.6 | 641.9 | 1225.5 | |
裁剪40%(ReLU+Sigmoid)+INT8量化 | 50.4 | 729.6 | 1477.5 | |
裁剪40%(Mish+Sigmoid)+INT8量化 | 49.7 | 759.7 | 1500.0 | |
裁剪40%[ | 52.7 | 694.3 | 1438.1 | |
裁剪20%(ReLU+Sigmoid)+INT8量化 | 61.8 | 551.9 | 977.0 | |
裁剪20%(Mish+Sigmoid)+INT8量化 | 60.1 | 564.3 | 1001.4 | |
裁剪20%[ | 64.7 | 513.1 | 941.8 | |
裁剪30%(ReLU+Sigmoid)+INT8量化 | 56.6 | 673.7 | 1282.7 | |
可见光数据集 | 裁剪30%(Mish+Sigmoid)+INT8量化 | 54.1 | 708.6 | 1318.0 |
裁剪30%[19] +INT8量化[ | 59.4 | 637.4 | 1196.5 | |
裁剪40%(ReLU+Sigmoid)+INT8量化 | 51.2 | 725.6 | 1487.5 | |
裁剪40%(Mish+Sigmoid)+INT8量化 | 50.5 | 744.3 | 1507.7 | |
裁剪40%[ | 53.6 | 687.6 | 1423.3 |
Table 7 Comparison of parameter quantity and hardware computing power
数据集 | 压缩方式 | 参数量/106 | 硬件算力GOPs/109s | |
---|---|---|---|---|
单线程 | 双线程 | |||
裁剪20%(ReLU+Sigmoid)+ INT8量化 | 61.1 | 560.2 | 995.8 | |
裁剪20%(Mish+Sigmoid)+INT8量化 | 59.1 | 564.8 | 1008.6 | |
裁剪20%[ | 63.8 | 518.4 | 937.2 | |
裁剪30%(ReLU+Sigmoid)+INT8量化 | 55.5 | 682.5 | 1298.0 | |
红外数据集 | 裁剪30%(Mish+Sigmoid)+INT8量化 | 53.4 | 714.3 | 1326.5 |
裁剪30%[ | 58.6 | 641.9 | 1225.5 | |
裁剪40%(ReLU+Sigmoid)+INT8量化 | 50.4 | 729.6 | 1477.5 | |
裁剪40%(Mish+Sigmoid)+INT8量化 | 49.7 | 759.7 | 1500.0 | |
裁剪40%[ | 52.7 | 694.3 | 1438.1 | |
裁剪20%(ReLU+Sigmoid)+INT8量化 | 61.8 | 551.9 | 977.0 | |
裁剪20%(Mish+Sigmoid)+INT8量化 | 60.1 | 564.3 | 1001.4 | |
裁剪20%[ | 64.7 | 513.1 | 941.8 | |
裁剪30%(ReLU+Sigmoid)+INT8量化 | 56.6 | 673.7 | 1282.7 | |
可见光数据集 | 裁剪30%(Mish+Sigmoid)+INT8量化 | 54.1 | 708.6 | 1318.0 |
裁剪30%[19] +INT8量化[ | 59.4 | 637.4 | 1196.5 | |
裁剪40%(ReLU+Sigmoid)+INT8量化 | 51.2 | 725.6 | 1487.5 | |
裁剪40%(Mish+Sigmoid)+INT8量化 | 50.5 | 744.3 | 1507.7 | |
裁剪40%[ | 53.6 | 687.6 | 1423.3 |
[1] |
李良福, 陈卫东, 高强, 等. 基于深度学习的光电系统智能目标识别[J]. 兵工学报, 2022, 43(增刊1) :162-168.
|
doi: 10.12382/bgxb.2022.A004 |
|
[2] |
李博, 王博, 韩京冶, 等. 基于车载计算机的红外图像移动目标检测[J]. 兵工学报, 2022, 43(增刊1): 66-73.
|
|
|
[3] |
于博文, 吕明. 改进的YOLOv3 算法及其在军事目标检测中的应用[J]. 兵工学报, 2022, 43(2): 345-354.
doi: 10.3969/j.issn.1000-1093.2022.02.012 |
doi: 10.3969/j.issn.1000-1093.2022.02.012 |
|
[4] |
杨传栋, 钱立志, 薛松, 等. 图像自寻的弹药目标检测方法综述[J]. 兵工学报, 2022, 43(10): 2687-2704.
|
doi: 10.12382/bgxb.2021.0610 |
|
[5] |
|
[6] |
|
[7] |
|
[8] |
|
[9] |
|
[10] |
|
[11] |
褚文杰. 基于YOLOv5的坦克装甲车辆目标检测关键技术的研究[D]. 北京: 北京交通大学, 2021.
|
|
|
[12] |
林建宇. 基于神经网络的特定目标车辆检测与匹配算法研究[D]. 长春: 吉林大学, 2022.
|
|
|
[13] |
龙赛. 基于YOLOv5s的航拍图像车辆检测算法研究[D]. 武汉: 华中师范大学, 2022.
|
|
|
[14] |
李垠汛. 基于无人机视角的车牌识别技术研究与实现[D]. 银川: 宁夏大学, 2022.
|
|
|
[15] |
董光辉, 陈星宇. YOLOv5定位多特征融合的车标识别[J]. 计算机工程与应用, 2023, 59(5):176-193.
doi: 10.3778/j.issn.1002-8331.2207-0389 |
doi: 10.3778/j.issn.1002-8331.2207-0389 |
|
[16] |
邓天民, 刘旭慧, 王丽, 等. 结合级联注意力机制的车辆检测算法[J]. 计算机工程与应用.
|
|
|
[17] |
|
[18] |
|
[19] |
|
[20] |
|
[21] |
|
[22] |
汪枭杰. 卷积神经网络压缩技术的研究与实现[D]. 北京: 北京邮电大学, 2019.
|
|
|
[23] |
|
[24] |
|
[25] |
|
[26] |
|
[1] | SONG Xiaoru, LIU Kang, GAO Song, CHEN Chaobo, YAN Kun. Research on Improved YOLOv5-based Military Target Recognition Algorithm Used in Complex Battlefield Environment [J]. Acta Armamentarii, 2024, 45(3): 934-947. |
[2] | LIU Bing, HAO Xinhong, ZHOU Wen, YANG Jin. Recognition Method of Target and Sweep Jamming Signal for FM Radio Fuze Based on BAS-BPNN [J]. Acta Armamentarii, 2023, 44(8): 2391-2403. |
[3] | HUO Jian, CHEN Huimin, MA Yunfei, GUO Pengyu, YANG Xu, MENG Xiangsheng. Vehicle Target Recognition Algorithm Based on MEMS LiDAR [J]. Acta Armamentarii, 2023, 44(4): 940-948. |
[4] | DING Bosheng, ZHANG Ruiheng, XU Lixin, CHEN Huiming. Sand-dust Image Restoration Using Gray Compensation and Feature Fusion [J]. Acta Armamentarii, 2023, 44(10): 3115-3126. |
[5] | KONG Guojie, FENG Shi, YU Huilong, JU Zhiyang, GONG Jianwei. A Review on Cooperative Motion Planning of Unmanned Vehicles [J]. Acta Armamentarii, 2023, 44(1): 11-26. |
[6] | WANG Shu-guang, ZENG Xiang-yang, WANG Zheng, WANG Qiang. Gammatone Subband Denoising and HHT-based Feature Extraction for Underwater Targets [J]. Acta Armamentarii, 2015, 36(9): 1704-1709. |
[7] | LI Cheng, LI Jian-xun, TONG Zhong-xiang, JIA Lin-tong, ZHANG Zhi-bo. Research on Partial Image Recognition and Tracking in Infrared Imaging Terminal Guidance [J]. Acta Armamentarii, 2015, 36(7): 1213-1221. |
[8] | SU Juan, YANG Luo, ZHANG Yang-yang. Infrared Target Recognition Algorithm Based on Contour Fragment Matching and Graph Searching [J]. Acta Armamentarii, 2015, 36(5): 854-860. |
[9] | ZHANG Peng-fei, LIU Wei, JIANG Ze-lin, LIU Ji-yuan, ZHANG Chun-hua. Research on Shadow Enhancement for Synthetic Aperture Sonar Images [J]. Acta Armamentarii, 2015, 36(2): 305-312. |
[10] | LIU Hui, YANG Jun-an, WANG Yi, CAI Xue-liang. An Improved Isometric Mapping Algorithm Based on New Geodesic Distance and Its Application in theFeature Extraction of Acoustic Targets [J]. Acta Armamentarii, 2012, 33(10): 1178-1184. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||