
Acta Armamentarii ›› 2025, Vol. 46 ›› Issue (9): 241006-.doi: 10.12382/bgxb.2024.1006
Previous Articles Next Articles
LIU Qiming, FAN Zhengyan, LI Tao, YANG Weilong, HAN Xu*(
)
Received:2024-11-05
Online:2025-09-24
Contact:
HAN Xu
CLC Number:
LIU Qiming, FAN Zhengyan, LI Tao, YANG Weilong, HAN Xu. Failure Mechanism of Solder Joints of Projectile-borne Electronic Package under High Overload Environment[J]. Acta Armamentarii, 2025, 46(9): 241006-.
Add to citation manager EndNote|Ris|BibTeX
| 序号 | 冲击类型 | 传感器 位置 | 加速度幅值/g | 脉宽/ms |
|---|---|---|---|---|
| 1 | 单次冲击 | 左端 | 17113 | 0.24 |
| 右端 | 26208 | 0.30 | ||
| 2 | 单次冲击 | 左端 | 20273 | 0.27 |
| 右端 | 27683 | 0.18 | ||
| 3 | 单次冲击 | 左端 | 21613 | 0.42 |
| 右端 | 24893 | 0.22 | ||
| 4 | 单次冲击 | 左端 | 35298 | 0.20 |
| 右端 | 43506 | 0.16 | ||
| 5 | 累积冲击 | 左端 | 30787-18180-12114 | 0.21-0.18-0.18 |
| 右端 | 35966-23676-18911 | 0.16-0.20-0.26 |
Table 1 Test results of high overload impact response of electronic components
| 序号 | 冲击类型 | 传感器 位置 | 加速度幅值/g | 脉宽/ms |
|---|---|---|---|---|
| 1 | 单次冲击 | 左端 | 17113 | 0.24 |
| 右端 | 26208 | 0.30 | ||
| 2 | 单次冲击 | 左端 | 20273 | 0.27 |
| 右端 | 27683 | 0.18 | ||
| 3 | 单次冲击 | 左端 | 21613 | 0.42 |
| 右端 | 24893 | 0.22 | ||
| 4 | 单次冲击 | 左端 | 35298 | 0.20 |
| 右端 | 43506 | 0.16 | ||
| 5 | 累积冲击 | 左端 | 30787-18180-12114 | 0.21-0.18-0.18 |
| 右端 | 35966-23676-18911 | 0.16-0.20-0.26 |
| 序号 | 结构 | 材料 | 密度/ (kg·m-3) | 弹性模量/ GPa | 泊松比 |
|---|---|---|---|---|---|
| 1 | 外壳 | 高强度钢 | 7860 | 200 | 0.27 |
| 2 | 电路筒 | 铝 | 2710 | 69 | 0.33 |
| 3 | 电路板 | FR-4 | 1970 | 14 | 0.18 |
| 4 | 芯片 | Si | 2300 | 160 | 0.23 |
| 5 | 引脚 | Cu | 8900 | 130 | 0.31 |
| 6 | 焊点 | SnAgCu | 7384 | 54 | 0.36 |
Table 2 Key material parameters for numerical model of electronic package[35]
| 序号 | 结构 | 材料 | 密度/ (kg·m-3) | 弹性模量/ GPa | 泊松比 |
|---|---|---|---|---|---|
| 1 | 外壳 | 高强度钢 | 7860 | 200 | 0.27 |
| 2 | 电路筒 | 铝 | 2710 | 69 | 0.33 |
| 3 | 电路板 | FR-4 | 1970 | 14 | 0.18 |
| 4 | 芯片 | Si | 2300 | 160 | 0.23 |
| 5 | 引脚 | Cu | 8900 | 130 | 0.31 |
| 6 | 焊点 | SnAgCu | 7384 | 54 | 0.36 |
| 材料 | 密度/ (kg·m-3) | 泊松比 | 常数 C01/MPa | 常数 C10/MPa |
|---|---|---|---|---|
| 橡胶 | 1150 | 0.499 | 1.50 | 0.50 |
Table 3 MOONEY-RIVLIN-RUBBER model parameters
| 材料 | 密度/ (kg·m-3) | 泊松比 | 常数 C01/MPa | 常数 C10/MPa |
|---|---|---|---|---|
| 橡胶 | 1150 | 0.499 | 1.50 | 0.50 |
| 材料 | 密度/ (kg·m-3) | 体积模量/ GPa | 初始剪切 模量/GPa | 长期剪切 模量/GPa | 衰减系 数/μs |
|---|---|---|---|---|---|
| 环氧树脂 | 1200 | 4.08 | 1.23 | 2.52 | 8.57 |
Table 4 VISCOELASTIC model parameters
| 材料 | 密度/ (kg·m-3) | 体积模量/ GPa | 初始剪切 模量/GPa | 长期剪切 模量/GPa | 衰减系 数/μs |
|---|---|---|---|---|---|
| 环氧树脂 | 1200 | 4.08 | 1.23 | 2.52 | 8.57 |
| 参数 | 数值 | 参数 | 数值 |
|---|---|---|---|
| A/MPa | 38 | m | 1 |
| B/MPa | 275 | Troom/K | 490 |
| C | 0.0713 | Tmelt/K | 298 |
| n | 0.71 |
Table 5 Johnson-Cook model parameters[36]
| 参数 | 数值 | 参数 | 数值 |
|---|---|---|---|
| A/MPa | 38 | m | 1 |
| B/MPa | 275 | Troom/K | 490 |
| C | 0.0713 | Tmelt/K | 298 |
| n | 0.71 |
| [1] |
李晓军, 张惠贤, 党爱国, 等. 俄军精确弹药作战使用及对防护工程建设的启示[J]. 防护工程, 2022, 44(3):64-69.
|
|
|
|
| [2] |
钱立志, 蒋滨安, 郭佳晖. 信息化炮弹抗高过载设计方法[J]. 兵工学报, 2023, 44(5):1310-1320.
|
|
doi: 10.12382/bgxb.2022.0016 |
|
| [3] |
崔梦曦, 郝宏旭, 王新星, 等. 基于导引头-弹体耦合模型和伴随制导系统的火箭弹脱靶量快速估计方法[J]. 兵工学报, 2022, 43(10):2554-2564.
|
|
|
|
| [4] |
|
| [5] |
王海霞. 抗冲击弹载记录仪的设计与研究[D]. 太原: 中北大学, 2019.
|
|
|
|
| [6] |
高超. 弯振复合载荷下板级组件焊点应力应变分析与优化[D]. 桂林: 桂林电子科技大学, 2021.
|
|
|
|
| [7] |
|
| [8] |
|
| [9] |
李望云, 李兴民, 汪健, 等. 电-热-力耦合载荷下非均匀组织Cu/Sn-58Bi/Cu微焊点拉伸力学性能研究[J]. 机械工程学报, 2022, 58(2):307-320.
doi: 10.3901/JME.2022.02.307 |
|
doi: 10.3901/JME.2022.02.307 |
|
| [10] |
|
| [11] |
党永斌. BGA焊点冲击疲劳寿命和损伤失效边界评估方法研究[D]. 哈尔滨: 哈尔滨工业大学, 2024.
|
|
|
|
| [12] |
钞红晓, 刘奇涛, 黄宏胜. 高能效宽脉冲强冲击试验与测试技术[M]. 北京: 科学出版社, 2024.
|
|
|
|
| [13] |
刘振. 冲击载荷作用下芯片封装的板级-整机可靠性研究[D]. 长沙: 中南大学, 2022.
|
|
|
|
| [14] |
|
| [15] |
|
| [16] |
|
| [17] |
|
| [18] |
刘文博. 硬目标侵彻引信电路冲击失效机理分析与防护方法研究[D]. 南京: 南京理工大学, 2021.
|
|
|
|
| [19] |
|
| [20] |
|
| [21] |
|
| [22] |
|
| [23] |
赵玉杰. 高g值冲击下灌封电路系统的动态响应及失效分析[D]. 太原: 中北大学, 2018.
|
|
|
|
| [24] |
|
| [25] |
|
| [26] |
吕明涛, 何虎. 高加速度载荷下三维堆叠封装冲击可靠性分析[J]. 导航与控制, 2022, 21(3):181-191,165.
|
|
|
|
| [27] |
|
| [28] |
|
| [29] |
牛乐毅. 多物理场作用下焊点电迁移失效机理研究[D]. 西安: 西安电子科技大学, 2022.
|
|
|
|
| [30] |
|
| [31] |
|
| [32] |
|
| [33] |
|
| [34] |
|
| [35] |
刘勇, 梁利华, 曲建民. 微电子器件及封装的建模与仿真[M]. 北京: 科学出版社, 2010.
|
|
|
|
| [36] |
李建刚. 应变率效应对无铅焊锡接点跌落冲击力学行为的影响[D]. 北京: 北京工业大学, 2009.
|
|
|
| [1] | GU Minhui, TANG Kui, WANG Jinxiang, XIA Jingwen, LI Yuanbo, WANG Hongfei. Penetration Fragmentation Characteristics and Damage After-effects of PELE with Slits [J]. Acta Armamentarii, 2025, 46(8): 240898-. |
| [2] | AN Chengyuan, LIU Haipeng, LIU Yan, REN Wei. Shock Wave Power Characteristics of Cylindrical Explosives with Elliptical Cross-section [J]. Acta Armamentarii, 2025, 46(8): 240969-. |
| [3] | WANG Ye, CHEN Huiyan, XI Junqiang, YU Huilong. An Overview of Research on Navigation of Amphibious Vehicle on Water [J]. Acta Armamentarii, 2025, 46(7): 240156-. |
| [4] | LI Qingsong, WANG Lei, ZHAO Ning, ZHANG Xiaotian, ZHANG Lei, WANG Kehong. Finite Element Simulation Analysis and Experimental Study of Arc Additive Frame Structure [J]. Acta Armamentarii, 2025, 46(7): 240629-. |
| [5] | GONG Xiaohui, RAO Guoning, ZHOU Rudong, ZHU Xiaofeng, KONG Decheng, MENG Chenyu. Test and Numerical Simulation of Penetration Resistance of Polyurea/fiber Composite Structures [J]. Acta Armamentarii, 2025, 46(7): 240709-. |
| [6] | YAN Ming, WANG Xinjie, HUANG Fenglei, YOU Sa. Thermal-ignition Response of Warhead Charge and Characteristics of Typical Thermal Protection Structure under Hypersonic Aerodynamic Heating [J]. Acta Armamentarii, 2025, 46(6): 240401-. |
| [7] | LIU Zhenxian, JIANG Jianwei, LI Mei, XIE Hongwei. High Precision Simulation of the Influence of Pressing Ring on EFP Forming Properties [J]. Acta Armamentarii, 2025, 46(1): 231193-. |
| [8] | YANG Xi, FENG Yukun, CHEN Zuogang, ZHANG Yan. Investigation of Navigation Performance and Jet Flow Characteristics of Water-jet Propulsion Vessel in Shallow Water [J]. Acta Armamentarii, 2024, 45(S2): 123-132. |
| [9] | ZHANG Jiansheng, JING Jianbin, SUN Hao, WANG Xiquan, LI Bo. Numerical Simulation and Experimental Study on Damage Effect of Prestressed T-shaped Beam under Blast Load [J]. Acta Armamentarii, 2024, 45(S2): 193-198. |
| [10] | LI Pengfei, XIA Hongli, HOU Chuanyu, ZHOU Yuqi, MIAO Haibin. The Virtual Test of Impact Damage on Weapon SystemBased on SPH Numerical Simulation Method [J]. Acta Armamentarii, 2024, 45(S2): 208-214. |
| [11] | JIANG Haojie, PENG Yong, SUN Yuyan, WANG Ziguo, XU Jiapei. Explosive Damage Law and Rapid Calculation Model for RC Bridge Piers [J]. Acta Armamentarii, 2024, 45(S2): 305-316. |
| [12] | JIN Wen, JIANG Jianwei, MEN Jianbing, LI Mei, LI Haifeng, ZHOU Xin. Investigation on Dynamic Response Characteristic of the Confined Powder under Impact Loading [J]. Acta Armamentarii, 2024, 45(S1): 183-190. |
| [13] | ZHANG Kun, ZHAO Changxiao, HAN Biao, JI Chong, ZHANG Bo, ZHANG Kaikai, TANG Rong. Numerical Simulation and Experimental Study on the Response Characteristics of Cylindrical Shell Charge under Collaborative Impact of Multiple Projectiles [J]. Acta Armamentarii, 2024, 45(S1): 70-80. |
| [14] | WANG Qingshuo, GUO Lei, GAO Hongyin, HE Yuan, WANG Chuanting, CHEN Pengxiang, HE Yong. Simulation Study of Axial Vibration of Graded Projectile Structure [J]. Acta Armamentarii, 2024, 45(S1): 191-199. |
| [15] | WANG Yajun, YU Rui, LI Weibing, LI Wenbin. Research on the Penetration Characteristics of Rod-shaped EFP and Its Influencing Factors [J]. Acta Armamentarii, 2024, 45(S1): 174-182. |
| Viewed | ||||||
|
Full text |
|
|||||
|
Abstract |
|
|||||