Acta Armamentarii ›› 2025, Vol. 46 ›› Issue (7): 240798-.doi: 10.12382/bgxb.2024.0798
Previous Articles Next Articles
MA Dong1, WANG Cheng1,*(), SHAO Nan1, WEI Jianshu2
Received:
2024-09-03
Online:
2025-08-12
Contact:
WANG Cheng
MA Dong, WANG Cheng, SHAO Nan, WEI Jianshu. Strengthening Effect of Polyurea on Multi-layer Blast-resistant Structure Subjected to Combined Action of Shock Wave and Fragments[J]. Acta Armamentarii, 2025, 46(7): 240798-.
Add to citation manager EndNote|Ris|BibTeX
样品编号 | 结构(从迎爆面到背爆面) |
---|---|
S-4 | 0.5mm钢板/30mm泡沫铝/0.5mm钢板/50mm岩棉/1mm钢板 |
S-5 | 0.5mm钢板/3mm聚脲/30mm泡沫铝/0.5mm钢板/50mm岩棉/1mm钢板 |
S-6 | 0.5mm钢板/30mm泡沫铝/3mm聚脲/0.5mm钢板/50mm岩棉/1mm钢板 |
S-7 | 0.5mm钢板/30mm泡沫铝/0.5mm钢板/3mm聚脲/50mm岩棉/1mm钢板 |
Table 1 Composition and parameters of of blast-resistant structure
样品编号 | 结构(从迎爆面到背爆面) |
---|---|
S-4 | 0.5mm钢板/30mm泡沫铝/0.5mm钢板/50mm岩棉/1mm钢板 |
S-5 | 0.5mm钢板/3mm聚脲/30mm泡沫铝/0.5mm钢板/50mm岩棉/1mm钢板 |
S-6 | 0.5mm钢板/30mm泡沫铝/3mm聚脲/0.5mm钢板/50mm岩棉/1mm钢板 |
S-7 | 0.5mm钢板/30mm泡沫铝/0.5mm钢板/3mm聚脲/50mm岩棉/1mm钢板 |
ρs/(g·cm-3) | E/GPa | ν | A/MPa | B/MPa | N | C/(m·s-1) |
---|---|---|---|---|---|---|
7.85 | 200 | 0.3 | 350.76 | 582.1 | 0.3823 | 255 |
Table 2 Model parameters of steel plate
ρs/(g·cm-3) | E/GPa | ν | A/MPa | B/MPa | N | C/(m·s-1) |
---|---|---|---|---|---|---|
7.85 | 200 | 0.3 | 350.76 | 582.1 | 0.3823 | 255 |
ρs/(g·cm-3) | E/GPa | ν |
---|---|---|
7.85 | 200 | 0.3 |
Table 3 Model parameters of fragments
ρs/(g·cm-3) | E/GPa | ν |
---|---|---|
7.85 | 200 | 0.3 |
ρ/ (g·cm-3) | C0 | C1 | C2 | C3 | C4 | C5 | C6 | E1/ (J·m-3) |
---|---|---|---|---|---|---|---|---|
0.00128 | 0.0 | 0.0 | 0.0 | 0.0 | 0.4 | 0.4 | 0.0 | 2.5×105 |
Table 4 Model parameters of air
ρ/ (g·cm-3) | C0 | C1 | C2 | C3 | C4 | C5 | C6 | E1/ (J·m-3) |
---|---|---|---|---|---|---|---|---|
0.00128 | 0.0 | 0.0 | 0.0 | 0.0 | 0.4 | 0.4 | 0.0 | 2.5×105 |
ρe/ (g·cm-3) | DC-J/ (m·s-1) | pC-J/ GPa | A1 / GPa | B1 / GPa | R1 | R2 | ω | E2 / GPa |
---|---|---|---|---|---|---|---|---|
1.667 | 8220 | 28 | 1140 | 23.9 | 5.7 | 1.65 | 0.6 | 10.1 |
Table 5 Model parameters of explosive
ρe/ (g·cm-3) | DC-J/ (m·s-1) | pC-J/ GPa | A1 / GPa | B1 / GPa | R1 | R2 | ω | E2 / GPa |
---|---|---|---|---|---|---|---|---|
1.667 | 8220 | 28 | 1140 | 23.9 | 5.7 | 1.65 | 0.6 | 10.1 |
距离/ cm | 自由场压力测试值/kPa | 平均值/ kPa | 模拟 压力/ kPa | 相对 误差/ % | |||
---|---|---|---|---|---|---|---|
S-4 | S-5 | S-6 | S-7 | ||||
75 | 377.6 | 369.4 | 383.6 | 384.9 | 378.9 | 362.2 | 4.4 |
100 | 198.0 | 186.4 | 182.2 | 186.7 | 188.3 | 177.8 | 5.6 |
120 | 109.6 | 114.3 | 119.9 | 115.2 | 114.8 | 119.4 | 4.0 |
140 | 86.7 | 84.0 | 96.0 | 86.1 | 88.2 | 85.9 | 2.6 |
160 | 55.7 | 55.7 | 58.0 | 58.3 | 56.9 | 62.4 | 9.7 |
Table 6 Comparison of measured pressure in experiment with simulated value
距离/ cm | 自由场压力测试值/kPa | 平均值/ kPa | 模拟 压力/ kPa | 相对 误差/ % | |||
---|---|---|---|---|---|---|---|
S-4 | S-5 | S-6 | S-7 | ||||
75 | 377.6 | 369.4 | 383.6 | 384.9 | 378.9 | 362.2 | 4.4 |
100 | 198.0 | 186.4 | 182.2 | 186.7 | 188.3 | 177.8 | 5.6 |
120 | 109.6 | 114.3 | 119.9 | 115.2 | 114.8 | 119.4 | 4.0 |
140 | 86.7 | 84.0 | 96.0 | 86.1 | 88.2 | 85.9 | 2.6 |
160 | 55.7 | 55.7 | 58.0 | 58.3 | 56.9 | 62.4 | 9.7 |
样品 | 夹芯钢 板着靶 | 夹芯钢 板穿透 | 夹芯钢 板穿透率/% | 背板 着靶 | 背板 穿透 | 背板 穿透率/% |
---|---|---|---|---|---|---|
S-4 | 9 | 5 | 55.6 | 4 | 1 | 25.0 |
S-5 | 7 | 2 | 28.6 | 2 | 0 | 0 |
S-6 | 8 | 1 | 12.5 | 1 | 0 | 0 |
S-7 | 8 | 3 | 37.5 | 2 | 0 | 0 |
Table 7 Quantity statistics of fragments impacting on and penetrating into the blast-resistant structure
样品 | 夹芯钢 板着靶 | 夹芯钢 板穿透 | 夹芯钢 板穿透率/% | 背板 着靶 | 背板 穿透 | 背板 穿透率/% |
---|---|---|---|---|---|---|
S-4 | 9 | 5 | 55.6 | 4 | 1 | 25.0 |
S-5 | 7 | 2 | 28.6 | 2 | 0 | 0 |
S-6 | 8 | 1 | 12.5 | 1 | 0 | 0 |
S-7 | 8 | 3 | 37.5 | 2 | 0 | 0 |
样品 | 夹芯钢板 位移实验 峰值/mm | 夹芯钢板 位移模拟 峰值/mm | 相对 误差/ % | 背板位移 实验峰值/ mm | 背板位移 模拟峰值/ mm | 相对 误差/ % |
---|---|---|---|---|---|---|
S-4 | 16.4 | 15.5 | 5.5 | 14.1 | 11.5 | 18.4 |
S-5 | 6.5 | 6.6 | 1.5 | 5.6 | 6.1 | 8.9 |
S-6 | 10.8 | 11.9 | 10.2 | 1.4 | 1.2 | 14.3 |
S-7 | 14.2 | 13.0 | 8.5 | 8.3 | 8.1 | 2.4 |
Table 8 Comparison of experimental and simulated peak displacement values
样品 | 夹芯钢板 位移实验 峰值/mm | 夹芯钢板 位移模拟 峰值/mm | 相对 误差/ % | 背板位移 实验峰值/ mm | 背板位移 模拟峰值/ mm | 相对 误差/ % |
---|---|---|---|---|---|---|
S-4 | 16.4 | 15.5 | 5.5 | 14.1 | 11.5 | 18.4 |
S-5 | 6.5 | 6.6 | 1.5 | 5.6 | 6.1 | 8.9 |
S-6 | 10.8 | 11.9 | 10.2 | 1.4 | 1.2 | 14.3 |
S-7 | 14.2 | 13.0 | 8.5 | 8.3 | 8.1 | 2.4 |
样品 | 夹芯钢板 总能量/J | 夹芯钢板 内能/J | 背板总 能量/J | 背板内 能/J |
---|---|---|---|---|
S-4 | 418.5 | 417.2 | 98.7 | 97.5 |
S-5 | 25.7 | 25.5 | 10.4 | 10.3 |
S-6 | 197.5 | 196.7 | 0.8 | 0.2 |
S-7 | 271.1 | 270.9 | 45.6 | 44.5 |
Table 9 The change in energy of sandwich plate and back plate
样品 | 夹芯钢板 总能量/J | 夹芯钢板 内能/J | 背板总 能量/J | 背板内 能/J |
---|---|---|---|---|
S-4 | 418.5 | 417.2 | 98.7 | 97.5 |
S-5 | 25.7 | 25.5 | 10.4 | 10.3 |
S-6 | 197.5 | 196.7 | 0.8 | 0.2 |
S-7 | 271.1 | 270.9 | 45.6 | 44.5 |
[1] |
|
[2] |
|
[3] |
|
[4] |
|
[5] |
|
[6] |
|
[7] |
|
[8] |
|
[9] |
|
[10] |
|
[11] |
|
[12] |
|
[13] |
|
[14] |
|
[15] |
|
[16] |
|
[17] |
|
[18] |
|
[19] |
|
[20] |
|
[21] |
|
[22] |
|
[23] |
|
[24] |
|
[25] |
董永香, 夏昌敬. 应力波在多层介质中传播特性数值分析[J]. 弹道学报, 2004, 16(3):28-32.
|
|
|
[26] |
|
[27] |
王洪欣, 查晓雄, 余敏, 等. 低速冲击下金属面夹芯板性能分析[J]. 振动与冲击, 2014, 33(10):81-86.
|
|
|
[28] |
doi: 10.1016/j.dt.2019.08.004 |
[29] |
|
[1] | GONG Xiaohui, RAO Guoning, ZHOU Rudong, ZHU Xiaofeng, KONG Decheng, MENG Chenyu. Test and Numerical Simulation of Penetration Resistance of Polyurea/fiber Composite Structures [J]. Acta Armamentarii, 2025, 46(7): 240709-. |
[2] | WANG Ran, ZHANG Yiming, GUO Songlin, WANG Haosen, WANG Ningfei, WU Yi. Dynamic Response and Damage Evolution of Cracked Composite Solid Propellants under Shock Wave Loading [J]. Acta Armamentarii, 2025, 46(7): 240778-. |
[3] | ZHOU Jie, ZHAO Xufeng, PI Aiguo. Calculation of Impact Energy Release Based on Fragment Size Distribution for Reactive Materials [J]. Acta Armamentarii, 2025, 46(6): 240545-. |
[4] | NI Yingfeng, CHEN Xiaowei. Characteristics of Fragment Cloud Produced by Hypervelocity Impact of Cylindrical Projectile on Stiffened Plate [J]. Acta Armamentarii, 2025, 46(6): 240812-. |
[5] | ZHA Jipeng, ZHANG Xiangjin, HUA Tuan, SHENG Na, KANG Yang. Analysis of the Influence of Shock Waves on the Detection Performance of Laser Fuze under High-speed Flight Conditions [J]. Acta Armamentarii, 2025, 46(6): 241131-. |
[6] | LIU Zheng, NIE Jianxin, KAN Runzhe, YANG Jinxiang, TAN Yanwei, GUO Xueyong, YAN Shi. Effect of Aluminum Powder Combustion on the Underwater Explosion Load Characteristics of CL-20-based Mixed Explosives [J]. Acta Armamentarii, 2025, 46(3): 240128-. |
[7] | WANG Xin, WU Yanqing, YANG Kun, WU Yi, HOU Xiao. Experimental Study on the Deflagration Mechanism of High-energy Propellant Charge Subjected to Fragment Impact [J]. Acta Armamentarii, 2025, 46(3): 240293-. |
[8] | XIAO Zeqi, GAO Xin, ZHANG Xueying, LIU Kaiyuan, YUE Lidan, QIN Zhiqi, CHEN Pengwan. Explosive Shock Synthesis of Cesium Lead Chloride Perovskite Powder [J]. Acta Armamentarii, 2025, 46(3): 240339-. |
[9] | REN Jie, JIANG Haiyan, JI Jianrong. A Point Cloud Splicing Method of Rectangular Fragment Interception Target Based on Euclidean Space Transformation [J]. Acta Armamentarii, 2025, 46(2): 240178-. |
[10] | LI Gang, HU Zhongling, HU Bin, LI Zhiyu, CAI Meng, HUANG Tushun. Dynamic Response Characteristics of Human Ear Subjected to High-intensity Sound Shock Wave [J]. Acta Armamentarii, 2025, 46(1): 231119-. |
[11] | JIA Shiyu, WANG Cheng, XU Wenlong, MA Dong, QI Fangfang. Protective Performance of Helmet with Annular Composite Liner [J]. Acta Armamentarii, 2025, 46(1): 231220-. |
[12] | WANG Tao, LIU Liangtao, WANG Jinxiang, ZHANG Yifan. The Damage Characteristics of Underwater Explosion of Explosives with Different Energy Structures on the Side Multi-cabin Structure [J]. Acta Armamentarii, 2025, 46(1): 231201-. |
[13] | LI Yin, DENG Guoqiang. Study on the Assessment of Damage level of Explosion Damage Elements against Personnel [J]. Acta Armamentarii, 2024, 45(S2): 186-192. |
[14] | FENG Changlin, SHI Rui, ZHANG Bing, WANG Xiaodong, LIAO Shasha. Static Power Field Reconstruction Method for Natural Fragmentation Warhead [J]. Acta Armamentarii, 2024, 45(S2): 283-292. |
[15] | LÜ Xiaoying, TANG Jiayu, WU Shilin, CAO Yuan, LIU Lin. Research on the Demand Analysis and Development Status of Anti-fire Interference High Dynamic Infrared Imaging Technology [J]. Acta Armamentarii, 2024, 45(S2): 90-96. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||