
					Acta Armamentarii ›› 2025, Vol. 46 ›› Issue (7): 240797-.doi: 10.12382/bgxb.2024.0797
Previous Articles Next Articles
					
													SHEN  Ying1, ZHANG  Shuo1, WANG  Shu1, SU  Yun2, XUE  Fang2, HUANG  Feng1,*(
)
												  
						
						
						
					
				
Received:2024-09-04
															
							
															
							
															
							
							
																	Online:2025-08-12
															
						Contact:
								HUANG  Feng   
																					SHEN Ying, ZHANG Shuo, WANG Shu, SU Yun, XUE Fang, HUANG Feng. A Method for Detecting the Camouflaged Small Target in Complex Scene Using Airborne Polarization Remote Sensing[J]. Acta Armamentarii, 2025, 46(7): 240797-.
Add to citation manager EndNote|Ris|BibTeX
| 目标类别 | 训练集 | 验证集 | 测试集 | 
|---|---|---|---|
| Military vehicle I | 1127 | 140 | 145 | 
| Missile vehicle II | 241 | 28 | 30 | 
| Camouflage board | 554 | 73 | 55 | 
| Jeep | 253 | 36 | 34 | 
| Person | 431 | 48 | 55 | 
Table 1 Polarization camouflaged small target dataset
| 目标类别 | 训练集 | 验证集 | 测试集 | 
|---|---|---|---|
| Military vehicle I | 1127 | 140 | 145 | 
| Missile vehicle II | 241 | 28 | 30 | 
| Camouflage board | 554 | 73 | 55 | 
| Jeep | 253 | 36 | 34 | 
| Person | 431 | 48 | 55 | 
| 探测角 度/(°)  |  S0图像 | DoLp图像 | Is图像 | 偏振编码图像 | 局部放大图 | 
|---|---|---|---|---|---|
| 45 |   |    |    |    |    | 
| 90 |   |    |    |    |    | 
Table 2 Comparison of the same target under different imaging conditions
| 探测角 度/(°)  |  S0图像 | DoLp图像 | Is图像 | 偏振编码图像 | 局部放大图 | 
|---|---|---|---|---|---|
| 45 |   |    |    |    |    | 
| 90 |   |    |    |    |    | 
| 高度/m | 军事车辆Ⅰ | 军事车辆Ⅱ | 伪装板 | 吉普车 | 伪装人 | 
|---|---|---|---|---|---|
| H30 |   |    |    |    |    | 
| H50 |   |    |    |    |    | 
| H70 |   |    |    |    |    | 
Table 3 Polarization encoded images of camouflaged small target
| 高度/m | 军事车辆Ⅰ | 军事车辆Ⅱ | 伪装板 | 吉普车 | 伪装人 | 
|---|---|---|---|---|---|
| H30 |   |    |    |    |    | 
| H50 |   |    |    |    |    | 
| H70 |   |    |    |    |    | 
| 网络结构 | mAP0.5/% | mAP0.5:0.95/% | FPS/(帧/s) | 
|---|---|---|---|
| FCOS | 47.5 | 18.6 | 53.1 | 
| YOLOV5 | 77.9 | 30.6 | 74.4 | 
| YOLOX | 79.5 | 31.9 | 69.7 | 
| YOLOV7 | 84.7 | 42.8 | 76.9 | 
| YOLOV8 | 87.7 | 34.8 | 108.0 | 
| PCSOD-YOLO | 92.4 | 47.8 | 60.6 | 
Table 4 Comparison of test results of different models
| 网络结构 | mAP0.5/% | mAP0.5:0.95/% | FPS/(帧/s) | 
|---|---|---|---|
| FCOS | 47.5 | 18.6 | 53.1 | 
| YOLOV5 | 77.9 | 30.6 | 74.4 | 
| YOLOX | 79.5 | 31.9 | 69.7 | 
| YOLOV7 | 84.7 | 42.8 | 76.9 | 
| YOLOV8 | 87.7 | 34.8 | 108.0 | 
| PCSOD-YOLO | 92.4 | 47.8 | 60.6 | 
| 目标类型 | FCOS | YOLOV5 | YOLOX | YOLOV7 | YOLOV8 | PCSOD-YOLO | 
|---|---|---|---|---|---|---|
| 军事 车辆Ⅰ  |    |    |    |    |    |    | 
| 军事 车辆Ⅱ  |    |    |    |    |    |    | 
| 伪装板 |   |    |    |    |    |    | 
| 伪装人 |   |    |    |    |    |    | 
| 吉普车 |   |    |    |    |    |    | 
Table 5 Partial enlarged views of the detection results of different models at height of 30m
| 目标类型 | FCOS | YOLOV5 | YOLOX | YOLOV7 | YOLOV8 | PCSOD-YOLO | 
|---|---|---|---|---|---|---|
| 军事 车辆Ⅰ  |    |    |    |    |    |    | 
| 军事 车辆Ⅱ  |    |    |    |    |    |    | 
| 伪装板 |   |    |    |    |    |    | 
| 伪装人 |   |    |    |    |    |    | 
| 吉普车 |   |    |    |    |    |    | 
| 目标类型 | FCOS | YOLOV5 | YOLOX | YOLOV7 | YOLOV8 | PCSOD-YOLO | 
|---|---|---|---|---|---|---|
| 军事 车辆Ⅰ  |    |    |    |    |    |    | 
| 军事 车辆Ⅱ  |    |    |    |    |    |    | 
| 伪装板 |   |    |    |    |    |    | 
| 伪装人 |   |    |    |    |    |    | 
| 吉普车 |   |    |    |    |    |    | 
Table 6 Partial enlarged views of the detected results of different models at height of 50m
| 目标类型 | FCOS | YOLOV5 | YOLOX | YOLOV7 | YOLOV8 | PCSOD-YOLO | 
|---|---|---|---|---|---|---|
| 军事 车辆Ⅰ  |    |    |    |    |    |    | 
| 军事 车辆Ⅱ  |    |    |    |    |    |    | 
| 伪装板 |   |    |    |    |    |    | 
| 伪装人 |   |    |    |    |    |    | 
| 吉普车 |   |    |    |    |    |    | 
| 目标类型 | FCOS | YOLOV5 | YOLOX | YOLOV7 | YOLOV8 | PCSOD-YOLO | 
|---|---|---|---|---|---|---|
| 军事 车辆Ⅰ  |    |    |    |    |    |    | 
| 军事 车辆Ⅱ  |    |    |    |    |    |    | 
| 伪装板 |   |    |    |    |    |    | 
| 伪装人 |   |    |    |    |    |    | 
| 吉普车 |   |    |    |    |    |    | 
Table 7 Partial enlarged views of the detected results of different models at height of 70m
| 目标类型 | FCOS | YOLOV5 | YOLOX | YOLOV7 | YOLOV8 | PCSOD-YOLO | 
|---|---|---|---|---|---|---|
| 军事 车辆Ⅰ  |    |    |    |    |    |    | 
| 军事 车辆Ⅱ  |    |    |    |    |    |    | 
| 伪装板 |   |    |    |    |    |    | 
| 伪装人 |   |    |    |    |    |    | 
| 吉普车 |   |    |    |    |    |    | 
| 序 号  |  预训练 权重  |  小目标 检测头  |  特征提 取模块  |  感受野 模块  |  mAP0.5/ %  |  参数量/ MB  | 
|---|---|---|---|---|---|---|
| 1 | √ | 84.7 | 36.5 | |||
| 2 | √ | √ | 87.4 | 36.5 | ||
| 3 | √ | √ | 89.3 | 36.7 | ||
| 4 | √ | √ | 89.2 | 37.0 | ||
| 5 | √ | √ | √ | 90.9 | 37.2 | |
| 6 | √ | √ | √ | 91.0 | 37.0 | |
| 7 | √ | √ | √ | 91.6 | 36.5 | |
| 8 | √ | √ | √ | √ | 92.4 | 37.2 | 
Table 8 Results of ablation experiment
| 序 号  |  预训练 权重  |  小目标 检测头  |  特征提 取模块  |  感受野 模块  |  mAP0.5/ %  |  参数量/ MB  | 
|---|---|---|---|---|---|---|
| 1 | √ | 84.7 | 36.5 | |||
| 2 | √ | √ | 87.4 | 36.5 | ||
| 3 | √ | √ | 89.3 | 36.7 | ||
| 4 | √ | √ | 89.2 | 37.0 | ||
| 5 | √ | √ | √ | 90.9 | 37.2 | |
| 6 | √ | √ | √ | 91.0 | 37.0 | |
| 7 | √ | √ | √ | 91.6 | 36.5 | |
| 8 | √ | √ | √ | √ | 92.4 | 37.2 | 
| [1] |  
											 | 
										
| [2] |  
											 | 
										
| [3] |  
											 | 
										
| [4] |  
											 | 
										
| [5] |  
											 | 
										
| [6] |  
											 | 
										
| [7] |  
											 | 
										
| [8] |  
											 | 
										
| [9] |  
											 | 
										
| [10] |  
											 胡焱, 原子昊, 涂晓光, 等. 基于对比学习的改进SSD目标检测算法[J]. 红外技术, 2024, 46(5):548-555. 
																						 | 
										
|  
											 | 
										|
| [11] |  
											 | 
										
| [12] |  
											 | 
										
| [13] |  
											 | 
										
| [14] |  
											 肖振久, 张杰浩, 林渤翰. 特征协同与细粒度感知的遥感图像小目标检测[J]. 光电工程, 2024, 51(6):52-65. 
																						 | 
										
|  
											 | 
										|
| [15] |  
											 | 
										
| [16] |  
											 | 
										
| [17] |  
											 郭永红, 牛海涛, 史超, 等. 基于卷积和注意力机制的小样本目标检测[J]. 兵工学报, 2023, 44(11):3508-3515.  
																							doi: 10.12382/bgxb.2022.1167  | 
										
|  
											 doi: 10.12382/bgxb.2022.1167  | 
										|
| [18] |  
											 | 
										
| [19] |  
											 doi: 10.1364/OE.390385 pmid: 32403811  | 
										
| [20] |  
											 | 
										
| [21] |  
											 沈英, 刘贤财, 王舒, 等. 基于偏振编码图像的低空伪装目标实时检测[J]. 兵工学报, 2024, 45(5):1374-1383.  
																							doi: 10.12382/bgxb.2022.1289  | 
										
|  
											 doi: 10.12382/bgxb.2022.1289  | 
										|
| [22] |  
											 | 
										
| [23] |  
											 | 
										
| [24] |  
											 | 
										
| [25] |  
											 | 
										
| [26] |  
											 | 
										
| [27] |  
											 | 
										
| [28] |  
											 惠康华, 杨卫, 刘浩翰, 等. 基于YOLOv5的增强多尺度目标检测方法[J]. 兵工学报, 2023, 44(9):2600-2610.  
																							doi: 10.12382/bgxb.2022.1147  | 
										
|  
											 | 
										|
| [29] |  
											 | 
										
| [30] |  
											 | 
										
| [31] |  
											 | 
										
| [32] |  
											 | 
										
| [1] | XIAO Peng, YU Haixia, HUANG Long, ZHANG Siming. 3D Path Planning of Unmanned Aerial Vehicle Based on MDEPSO Algorithm [J]. Acta Armamentarii, 2025, 46(7): 240710-. | 
| [2] | XU Yang, WEI Chao, FENG Fuyong, HU Leyun. Autonomous Landing of UAVs based on Spatio-temporal Decomposition Planning [J]. Acta Armamentarii, 2025, 46(7): 240653-. | 
| [3] | QIN Yuemei, CHEN Zhong, YANG Yanbo, LI Shuying. Joint State Equality Constraint Identification and Recursive Filtering Based on Deep Learning [J]. Acta Armamentarii, 2025, 46(6): 240578-. | 
| [4] | WANG Weihan, GAO Mingze, SHI Xiaolong, HU Shiyuan, WU Yanjiang, CHEN Huimin. Modeling and Verification of Dynamic Imaging of UAV-borne Line-array LiDAR [J]. Acta Armamentarii, 2025, 46(6): 240836-. | 
| [5] | SUN Shiyan, LI Lin, ZHU Huimin, SHI Zhangsong, LIANG Weige. Intelligent Recognition of Flight Pattern Based on IFPRM-SBLFS Deep Learning [J]. Acta Armamentarii, 2025, 46(5): 240893-. | 
| [6] | YAN Xiaojia, ZHU Huimin, SUN Shiyan, SHI Zhangsong, JIANG Shang. An Improved Mutant Firefly Algorithm Optimized Particle Filter Algorithm for UAV Target Positioning [J]. Acta Armamentarii, 2025, 46(5): 240549-. | 
| [7] | ZHOU Zhenlin, LONG Teng, LIU Dawei, SUN Jingliang, ZHONG Jianxin, LI Junzhi. Path Planning Method for Large-scale UAV Swarms Based on Reinforcement Learning Conflict Resolution [J]. Acta Armamentarii, 2025, 46(5): 241146-. | 
| [8] | HE Ziqi, LI Bochen, WANG Chenggang, SONG Lei. Multi-UAV Sequential Capture Algorithm for Area Defense [J]. Acta Armamentarii, 2025, 46(4): 240343-. | 
| [9] | HOU Tianle, BI Wenhao, HUANG Zhanjun, LI Minghao, ZHANG An. Prescribed-time Formation Control with Event-triggering Mechanism for Multi-agent Systems [J]. Acta Armamentarii, 2025, 46(4): 240292-. | 
| [10] | ZENG Zhaoyang, PENG Wensheng, LI Yunkai, XU Ming. Connotation,Development and Challenges of Reliability Technology of Intelligent UAV Swarm [J]. Acta Armamentarii, 2025, 46(3): 240322-. | 
| [11] | LIU Cong, LI Baiqing, ZHANG Zongwei, SHAN Zezhong. Investigation of Multi-dimensional Aerodynamic Characteristics of UAV Rotor Subjected to Horizontal Inflow [J]. Acta Armamentarii, 2025, 46(3): 240316-. | 
| [12] | ZHANG Fenglin, DONG Yihao, XIN Jianshe, GUO Liping, GU Xuechen, QU Jiaqi. Parameter Selection and Optimization Algorithm for Low-overload Compressed Air Launch of Small Unmanned Aerial Vehicles Based on Particle Swarm Optimization [J]. Acta Armamentarii, 2025, 46(2): 240014-. | 
| [13] | ZHANG Xinze, XIAO Haijian, LIU Xinglong, XING Kongrui, LU Xiang. Design and Realization of a Ducted Fan Water-air Amphibious UAV [J]. Acta Armamentarii, 2025, 46(1): 231172-. | 
| [14] | FENG Yingbin, GUO Xiaozun, YAN Jiahua. Small UVA Target Detection Algorithm Based on Multi-scale Attention Mechanism [J]. Acta Armamentarii, 2025, 46(1): 231124-. | 
| [15] | SUN Xichen, LI Weibing, HUANG Changwei, FU Jiawei, FENG Jun. Multi-step-ahead Prediction of Grenade Trajectory Based on CNN-LSTM Enhanced by Deep Learning and Self-attention Mechanism [J]. Acta Armamentarii, 2024, 45(S1): 51-59. | 
| Viewed | ||||||
| 
										Full text | 
									
										 | 
								|||||
| 
										Abstract | 
									
										 | 
								|||||