Acta Armamentarii ›› 2025, Vol. 46 ›› Issue (1): 231220-.doi: 10.12382/bgxb.2023.1220
Previous Articles Next Articles
JIA Shiyu1, WANG Cheng1,*(), XU Wenlong2,**(
), MA Dong1, QI Fangfang1
Received:
2023-12-28
Online:
2024-04-19
Contact:
WANG Cheng, XU Wenlong
CLC Number:
JIA Shiyu, WANG Cheng, XU Wenlong, MA Dong, QI Fangfang. Protective Performance of Helmet with Annular Composite Liner[J]. Acta Armamentarii, 2025, 46(1): 231220-.
Add to citation manager EndNote|Ris|BibTeX
工况 | 名称 | 聚脲宽度/ mm | 泡沫宽度/ mm | 海绵宽度/ mm |
---|---|---|---|---|
1 | AL-10 | 10 | 10 | 10 |
2 | AL-15 | 15 | 15 | 5 |
3 | AL-20 | 20 | 20 | |
4 | AL-0 | 20 | ||
5 | No-AL | |||
6 | 裸头模 |
Table 1 Width parameters of different liners
工况 | 名称 | 聚脲宽度/ mm | 泡沫宽度/ mm | 海绵宽度/ mm |
---|---|---|---|---|
1 | AL-10 | 10 | 10 | 10 |
2 | AL-15 | 15 | 15 | 5 |
3 | AL-20 | 20 | 20 | |
4 | AL-0 | 20 | ||
5 | No-AL | |||
6 | 裸头模 |
名称 | 防护性能指标 | 前额 | 颅顶 | 后脑 |
---|---|---|---|---|
裸头模 | 超压/kPa | 45.46 | 20.64 | 18.56 |
No-AL | 超压/kPa | 46.74 | 9.51 | 31.59 |
超压衰减率/% | -2.82 | 53.92 | -70.20 | |
AL-10 | 超压/kPa | 6.72 | 5.12 | 9.77 |
超压衰减率/% | 85.22 | 75.19 | 47.36 | |
AL-15 | 超压/kPa | 1.18 | 4.45 | 9.07 |
超压衰减率/% | 97.40 | 78.44 | 51.13 | |
AL-20 | 超压/kPa | 3.68 | 5.62 | 10.24 |
超压衰减率/% | 91.90 | 72.77 | 44.83 | |
AL-0 | 超压/kPa | 12.39 | 8.68 | 14.38 |
超压衰减率/% | 72.75 | 57.95 | 22.52 |
Table 2 Peak value and attenuation rate of overpressure at eachmeasuring point under different conditions
名称 | 防护性能指标 | 前额 | 颅顶 | 后脑 |
---|---|---|---|---|
裸头模 | 超压/kPa | 45.46 | 20.64 | 18.56 |
No-AL | 超压/kPa | 46.74 | 9.51 | 31.59 |
超压衰减率/% | -2.82 | 53.92 | -70.20 | |
AL-10 | 超压/kPa | 6.72 | 5.12 | 9.77 |
超压衰减率/% | 85.22 | 75.19 | 47.36 | |
AL-15 | 超压/kPa | 1.18 | 4.45 | 9.07 |
超压衰减率/% | 97.40 | 78.44 | 51.13 | |
AL-20 | 超压/kPa | 3.68 | 5.62 | 10.24 |
超压衰减率/% | 91.90 | 72.77 | 44.83 | |
AL-0 | 超压/kPa | 12.39 | 8.68 | 14.38 |
超压衰减率/% | 72.75 | 57.95 | 22.52 |
名称 | 防护性能指标 | 前额 | 颅顶 | 后脑 |
---|---|---|---|---|
裸头模 | 超压/kPa | 184.13 | 124.01 | 181.25 |
No-AL | 正压/kPa | 97.17 | 44.78 | 64.68 |
负压/kPa | -97.36 | |||
超压衰减率/% | 47.23 | 63.89 | 64.31 | |
AL-10 | 正压/kPa | 22.54 | 26.48 | 32.08 |
负压/kPa | -117.52 | |||
超压衰减率/% | 87.76 | 78.65 | 82.30 | |
AL-15 | 正压/kPa | 14.26 | 13.87 | 23.21 |
负压/kPa | -103.77 | |||
超压衰减率/% | 92.26 | 88.82 | 87.19 | |
AL-20 | 正压/kPa | 19.86 | 17.32 | 18.97 |
负压/kPa | -136.24 | |||
超压衰减率/% | 89.21 | 86.03 | 89.53 | |
AL-0 | 正压/kPa | 41.83 | 37.30 | 105.05 |
负压/kPa | -47.24 | -123.38 | ||
超压衰减率/% | 77.28 | 69.92 | 42.04 |
Table 3 Peak value and attenuation rate of overpressure at eachmeasuring point under different conditions
名称 | 防护性能指标 | 前额 | 颅顶 | 后脑 |
---|---|---|---|---|
裸头模 | 超压/kPa | 184.13 | 124.01 | 181.25 |
No-AL | 正压/kPa | 97.17 | 44.78 | 64.68 |
负压/kPa | -97.36 | |||
超压衰减率/% | 47.23 | 63.89 | 64.31 | |
AL-10 | 正压/kPa | 22.54 | 26.48 | 32.08 |
负压/kPa | -117.52 | |||
超压衰减率/% | 87.76 | 78.65 | 82.30 | |
AL-15 | 正压/kPa | 14.26 | 13.87 | 23.21 |
负压/kPa | -103.77 | |||
超压衰减率/% | 92.26 | 88.82 | 87.19 | |
AL-20 | 正压/kPa | 19.86 | 17.32 | 18.97 |
负压/kPa | -136.24 | |||
超压衰减率/% | 89.21 | 86.03 | 89.53 | |
AL-0 | 正压/kPa | 41.83 | 37.30 | 105.05 |
负压/kPa | -47.24 | -123.38 | ||
超压衰减率/% | 77.28 | 69.92 | 42.04 |
[1] |
doi: 10.1007/s10439-022-02982-5 pmid: 35668281 |
[2] |
康越, 张仕忠, 张远平, 等. 基于激波管评价的单兵头面部装备冲击波防护性能研究[J]. 爆炸与冲击, 2021, 41(8):085901.
|
|
|
[3] |
|
[4] |
|
[5] |
|
[6] |
周建国, 唐华民. 创伤性脑损伤动物模型的研究进展[J]. 医学研究生学报, 2019, 32(5):546-551.
|
|
|
[7] |
蔡志华, 贺葳, 汪剑辉, 等. 爆炸波致颅脑损伤力学机制与防护综述[J]. 兵工学报, 2022, 43(2):467-480.
|
doi: 10.3969/j.issn.1000-1093.2022.02.025 |
|
[8] |
熊漫漫, 覃彬, 徐诚, 等. 冲击波作用有/无防护颅脑靶标动态响应规律[J]. 兵工学报, 2022, 43(9):2182-2189.
|
doi: 10.12382/bgxb.2022.0483 |
|
[9] |
doi: 10.1089/neu.2016.4600 pmid: 27855566 |
[10] |
doi: 10.3233/THC-202406 pmid: 33522988 |
[11] |
伍杨, 覃彬, 王舒, 等. 基于爆炸冲击波的头盔防护性能[J]. 兵工学报, 2022, 43(9):2121-2128.
|
doi: 10.12382/bgxb.2022.0553 |
|
[12] |
|
[13] |
|
[14] |
|
[15] |
|
[16] |
|
[17] |
|
[18] |
|
[19] |
|
[20] |
|
[21] |
|
[22] |
doi: 10.1016/j.dt.2017.08.004 |
[23] |
|
[24] |
|
[25] |
张文超, 王舒, 梁增友, 等. 基于空气流场压力分析的头盔冲击波防护效能研究[J]. 爆炸与冲击, 2022, 42(11):113201.
|
|
|
[26] |
doi: 10.1080/10255842.2011.597353 pmid: 21806412 |
[27] |
|
[28] |
|
[29] |
|
[30] |
栗志杰, 由小川, 柳占立, 等. 爆炸冲击波作用下颅脑损伤机理的数值模拟研究[J]. 爆炸与冲击, 2020, 40(1):015901.
|
|
|
[31] |
|
[32] |
何锦涛. 爆炸冲击引起的脑损伤及其防护的数值分析[D]. 大连: 大连理工大学, 2021.
|
|
|
[33] |
|
[1] | MA Ruilong, WANG Xinjie, SUN Zhimin, YOU Sa, HUANG Fenglei. Near-field Blast Wave Characteristics of Spherical and Cylindrical Charges [J]. Acta Armamentarii, 2025, 46(1): 231105-. |
[2] | CHEN Tainian, REN Huiqi, LI Suling, ZHANG Shanshan, ZHANG Chengjian, YUAN Ye. Test and Numerical Research of Explosion Inside Partially Confined Tunnel Structure [J]. Acta Armamentarii, 2024, 45(7): 2404-2413. |
[3] | LIU Yu, LU Shufan, SUO Tao, HOU Bing, FAN Zhiqiang, LI Yuan. Experimental Study on the Effect of Liquid-filled Tube Structure on Shock Wave Attenuation [J]. Acta Armamentarii, 2024, 45(7): 2374-2382. |
[4] | ZHANG Changlong, CHEN Li, WANG Jing, JIAO Wei, LI Haitao. Study on Curved Surface Formability of 3D Woven Preform for Ballistic Helmet [J]. Acta Armamentarii, 2024, 45(6): 2017-2024. |
[5] | LI Gang, XU Bingchuan, HU Bin, CAI Meng. Experimental Research on Human Lung Injury Induced by Complex Blast Wave [J]. Acta Armamentarii, 2024, 45(5): 1681-1691. |
[6] | YU Wenjun, CHEN Shengyun, DENG Shuxin, YU Bingbing, JIN Dongyan. Numerical Simulation of the Propagation Law of Explosion Shock Wave in Turning Tunnel [J]. Acta Armamentarii, 2023, 44(S1): 180-188. |
[7] | ZHOU Yuelan, PEI Lu, LONG Renrong, ZHANG Qingming, LIU Bowen, REN Jiankang. Study on the Evolution Characteristics of Pressure Pulse in Shock Tube and a Method of Simulating Air Explosion Shock Wave [J]. Acta Armamentarii, 2023, 44(12): 3815-3825. |
[8] | NIE Weixiao, WEN Yaoke, DONG Fangdong, QIN Bin, LUO Xiaohao, TONG Liangcheng. Numerical Simulation of Bludgeoning Effect of Fragments Penetrating Head Target Wearing Bulletproof Helmet [J]. Acta Armamentarii, 2022, 43(9): 2075-2085. |
[9] | WU Yang, QIN Bin, WANG Shu, XIONG Manman, AN Shuo, LU Haitao, ZHANG Xianfeng. Protective Performance of Helmet Based on Blast Shock Wave [J]. Acta Armamentarii, 2022, 43(9): 2121-2128. |
[10] | FAN Xin, HUANG Xingyuan, CHANG Lijun, WANG Tianhao, ZHAO Yongfei, CAI Zhihua. Dynamic Head-Neck Response to Bullet Impact and Effects of Passive Muscles on the Neck [J]. Acta Armamentarii, 2022, 43(9): 2200-2209. |
[11] | SHEN Zhouyu, WEN Yaoke, YAN Wenmin, DONG Fangdong, ZHANG Junbin, LI Ying. Behind-Helmet Blunt Trauma of a Pistol Bullet Striking Ballistic Helmet-Covered Human Head and Neck Target [J]. Acta Armamentarii, 2022, 43(9): 2101-2112. |
[12] | ZHENG Qiujie, GUO Yingfu, CAI Zhihua, ZHANG Lei. Protective Performance of Functionally Graded Foam Lining Subjected to High-speed Rifle Bullet Impact [J]. Acta Armamentarii, 2021, 42(6): 1275-1282. |
[13] | JIANG Miao-wen , YAN Jian-zhuo, CHEN Ji-min. 3D Printing of Military Helmet Liner Structure Based on Topology Optimization [J]. Acta Armamentarii, 2017, 38(9): 1845-1853. |
[14] | CAI Zhi-hua, BAO Zheng, WANG Wei, MAO Zheng-yu. Simulation of Non-penetrating Damage of Head due to Bullet Impact to Helmet [J]. Acta Armamentarii, 2017, 38(6): 1097-1105. |
[15] | WANG Tao, YU Wen-li, QIN Qing-hua, WANG Jin-tao,WANG Tie-jun. Experimental Investigation into Deformation and Damage Patterns of Sandwich Plates with Aluminum Foam Core Subjected toBlast Loading [J]. Acta Armamentarii, 2016, 37(8): 1456-1463. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||