Acta Armamentarii ›› 2024, Vol. 45 ›› Issue (S2): 123-132.doi: 10.12382/bgxb.2024.0847
Previous Articles Next Articles
YANG Xi1,2, FENG Yukun1,2, CHEN Zuogang1,2,*(), ZHANG Yan3
Received:
2024-09-14
Online:
2024-12-12
Contact:
CHEN Zuogang
YANG Xi, FENG Yukun, CHEN Zuogang, ZHANG Yan. Investigation of Navigation Performance and Jet Flow Characteristics of Water-jet Propulsion Vessel in Shallow Water[J]. Acta Armamentarii, 2024, 45(S2): 123-132.
Add to citation manager EndNote|Ris|BibTeX
网格编号 | 基础 尺寸/m | 网格 数目/106 | 升沉/ ×10-2m | 纵倾/ ×10-1(°) |
---|---|---|---|---|
1 | 0.512 | 28.16 | -0.780 | -0.946 |
2 | 0.640 | 19.41 | -0.774 | -0.970 |
3 | 0.800 | 13.50 | -0.764 | -1.006 |
Table 1 Three sets of grid sizes and numbers
网格编号 | 基础 尺寸/m | 网格 数目/106 | 升沉/ ×10-2m | 纵倾/ ×10-1(°) |
---|---|---|---|---|
1 | 0.512 | 28.16 | -0.780 | -0.946 |
2 | 0.640 | 19.41 | -0.774 | -0.970 |
3 | 0.800 | 13.50 | -0.764 | -1.006 |
h/T | 纵倾/(°) | 升沉/m |
---|---|---|
10 | -0.1165 | -0.0104 |
8 | -0.1230 | -0.0125 |
6 | -0.1558 | -0.0160 |
5 | -0.1406 | -0.0200 |
4 | -0.2267 | -0.0268 |
3.5 | -0.3397 | -0.0292 |
3 | -0.5434 | -0.0478 |
2.8 | -1.0776 | -0.0569 |
2.7 | -1.4282 | -0.0586 |
2.66 | -1.6075 | -0.0603 |
Table 2 Comparison of navigation states under different water depth conditions
h/T | 纵倾/(°) | 升沉/m |
---|---|---|
10 | -0.1165 | -0.0104 |
8 | -0.1230 | -0.0125 |
6 | -0.1558 | -0.0160 |
5 | -0.1406 | -0.0200 |
4 | -0.2267 | -0.0268 |
3.5 | -0.3397 | -0.0292 |
3 | -0.5434 | -0.0478 |
2.8 | -1.0776 | -0.0569 |
2.7 | -1.4282 | -0.0586 |
2.66 | -1.6075 | -0.0603 |
h/T | αair1×105 | αair2×105 | ||
---|---|---|---|---|
10 | 0.3173 | 0.3173 | 0.8454 | 0.9197 |
8 | 0.3168 | 0.3168 | 1.5579 | 1.3455 |
6 | 0.3181 | 0.3181 | 3.9487 | 0.3831 |
5 | 0.3162 | 0.3162 | 0.3796 | 0.2368 |
4 | 0.3172 | 0.3172 | 0.7127 | 0.5714 |
3.5 | 0.3180 | 0.3180 | 0.5351 | 0.4410 |
3 | 0.3174 | 0.3174 | 1.8878 | 0.5918 |
2.8 | 0.3193 | 0.3193 | 1.4315 | 0.2050 |
2.7 | 0.3241 | 0.3241 | 1.5776 | 0.5538 |
2.66 | 0.3260 | 0.3260 | 0.5424 | 0.5692 |
Table 3 Numerical Calculation results of jet flow parameters of water-jet propulsor under different water depth conditions
h/T | αair1×105 | αair2×105 | ||
---|---|---|---|---|
10 | 0.3173 | 0.3173 | 0.8454 | 0.9197 |
8 | 0.3168 | 0.3168 | 1.5579 | 1.3455 |
6 | 0.3181 | 0.3181 | 3.9487 | 0.3831 |
5 | 0.3162 | 0.3162 | 0.3796 | 0.2368 |
4 | 0.3172 | 0.3172 | 0.7127 | 0.5714 |
3.5 | 0.3180 | 0.3180 | 0.5351 | 0.4410 |
3 | 0.3174 | 0.3174 | 1.8878 | 0.5918 |
2.8 | 0.3193 | 0.3193 | 1.4315 | 0.2050 |
2.7 | 0.3241 | 0.3241 | 1.5776 | 0.5538 |
2.66 | 0.3260 | 0.3260 | 0.5424 | 0.5692 |
Fig.16 Turbulent kinetic energies of jet flows of water-jet propelsors under different water depth conditions (Left:inner-side propelsor;Right: outer-side propelsor)
核函数 | 纵倾 | 升沉 | ||
---|---|---|---|---|
指数核函数 | 1.0000 | 1.0000 | 1.0000 | 1.0000 |
RBF核函数 | 0.9999 | 1.0000 | 1.0000 | 1.0000 |
Matern核函数 | 0.9999 | 1.0000 | 1.0000 | 1.0000 |
Table 4 Comparison of R2 results obtained from regression fitting of different GPR kernel functions
核函数 | 纵倾 | 升沉 | ||
---|---|---|---|---|
指数核函数 | 1.0000 | 1.0000 | 1.0000 | 1.0000 |
RBF核函数 | 0.9999 | 1.0000 | 1.0000 | 1.0000 |
Matern核函数 | 0.9999 | 1.0000 | 1.0000 | 1.0000 |
参数 | h/T=2.9 | 误差 /100% | h/T=4.5 | 误差 /100% | ||
---|---|---|---|---|---|---|
数值结果 | 预测结果 | 数值结果 | 预测结果 | |||
纵倾 | -0.8170 | -0.8107 | 0.77 | -0.1936 | -0.1867 | 3.57 |
升沉 | -0.0542 | -0.0524 | 3.38 | -0.0224 | -0.0234 | -4.72 |
0.3173 | 0.3182 | -0.27 | 0.0110 | 0.3163 | 0.18 | |
0.3169 | 0.3178 | -0.27 | 0.0109 | 0.3154 | 0.00 |
Table 5 Comparisonof numerical results and predicted results
参数 | h/T=2.9 | 误差 /100% | h/T=4.5 | 误差 /100% | ||
---|---|---|---|---|---|---|
数值结果 | 预测结果 | 数值结果 | 预测结果 | |||
纵倾 | -0.8170 | -0.8107 | 0.77 | -0.1936 | -0.1867 | 3.57 |
升沉 | -0.0542 | -0.0524 | 3.38 | -0.0224 | -0.0234 | -4.72 |
0.3173 | 0.3182 | -0.27 | 0.0110 | 0.3163 | 0.18 | |
0.3169 | 0.3178 | -0.27 | 0.0109 | 0.3154 | 0.00 |
[1] |
|
[2] |
孙帅, 王超, 常欣, 等. 浅水效应对船舶阻力及流场特性的影响分析[J]. 哈尔滨工程大学学报, 2017, 38(4):499-505.
|
|
|
[3] |
邓辉, 王尔力, 易文彬, 等. 阻塞效应显著的限制水域船舶水压场数值模型构建与应用[J]. 兵工学报. 2022, 43(3):605-616.
doi: 10.12382/bgxb.2021.0106 |
|
|
[4] |
|
[5] |
潘中永, 吴涛涛, 潘希伟, 等. 斜流式泵喷水推进器内部流动不稳定性分析[J]. 华中科技大学学报(自然科学版), 2012, 40(9):118-121.
|
|
|
[6] |
李鑫. 高速艇喷水推进器流场特性数值模拟[D]. 镇江: 江苏科技大学, 2013.
|
|
|
[7] |
常书平, 王永生, 庞之洋, 等. 进速比对喷水推进器进水流道性能影响研究[J]. 武汉理工大学学报(交通科学与工程版). 2010, 34(4):721-724.
|
|
|
[8] |
岑春海. 喷水推进器倒车水斗流动特性及优化设计研究[D]. 镇江: 江苏大学, 2019.
|
|
|
[9] |
刘月伟. 来流含气条件下船用喷水推进器内部流动特性研究[D]. 镇江: 江苏大学, 2021.
|
|
|
[10] |
王野, 陈慧岩, 汪泰霖, 等. 矢量喷水推进两栖车航行姿态的数值及试验分析[J]. 兵工学报, 2022, 43(12):3172-3185.
|
|
|
[11] |
鲁航, 刘昊然, 陈泰然, 等. 喷水推进两栖车辆水面航行特性试验与数值计算研究[J]. 兵工学报, 2024, 45(8):2629-2645.
doi: 10.12382/bgxb.2023.0620 |
|
|
[12] |
|
[13] |
|
[14] |
|
[15] |
刘占一, 宋保维, 黄桥高, 等. 基于CFD技术的泵喷推进器水动力性能仿真方法[J]. 西北工业大学学报, 2010, 28(5):724-729.
|
|
[1] | ZHANG Jiansheng, JING Jianbin, SUN Hao, WANG Xiquan, LI Bo. Numerical Simulation and Experimental Study on Damage Effect of Prestressed T-shaped Beam under Blast Load [J]. Acta Armamentarii, 2024, 45(S2): 193-198. |
[2] | LI Pengfei, XIA Hongli, HOU Chuanyu, ZHOU Yuqi, MIAO Haibin. The Virtual Test of Impact Damage on Weapon SystemBased on SPH Numerical Simulation Method [J]. Acta Armamentarii, 2024, 45(S2): 208-214. |
[3] | JIANG Haojie, PENG Yong, SUN Yuyan, WANG Ziguo, XU Jiapei. Explosive Damage Law and Rapid Calculation Model for RC Bridge Piers [J]. Acta Armamentarii, 2024, 45(S2): 305-316. |
[4] | JIN Wen, JIANG Jianwei, MEN Jianbing, LI Mei, LI Haifeng, ZHOU Xin. Investigation on Dynamic Response Characteristic of the Confined Powder under Impact Loading [J]. Acta Armamentarii, 2024, 45(S1): 183-190. |
[5] | ZHANG Kun, ZHAO Changxiao, HAN Biao, JI Chong, ZHANG Bo, ZHANG Kaikai, TANG Rong. Numerical Simulation and Experimental Study on the Response Characteristics of Cylindrical Shell Charge under Collaborative Impact of Multiple Projectiles [J]. Acta Armamentarii, 2024, 45(S1): 70-80. |
[6] | WANG Qingshuo, GUO Lei, GAO Hongyin, HE Yuan, WANG Chuanting, CHEN Pengxiang, HE Yong. Simulation Study of Axial Vibration of Graded Projectile Structure [J]. Acta Armamentarii, 2024, 45(S1): 191-199. |
[7] | WANG Yajun, YU Rui, LI Weibing, LI Wenbin. Research on the Penetration Characteristics of Rod-shaped EFP and Its Influencing Factors [J]. Acta Armamentarii, 2024, 45(S1): 174-182. |
[8] | WU Chunyao, SONG Chunming, LI Gan, XU Guangan, HAN Tong. Pressure Threshold and Influencing Factors of High-pressure Diaphragm Breaking [J]. Acta Armamentarii, 2024, 45(9): 3307-3316. |
[9] | YANG Guitao, GUO Rui, SONG Pu, GAO Guangfa, YU Yanghui. The Structural Parameters of Combined Liner for Tandem Explosively Formed Projectile [J]. Acta Armamentarii, 2024, 45(9): 3056-3070. |
[10] | LU Hang, LIU Haoran, CHEN Tairan, HUANG Biao, WANG Guoyu, CHEN Huiyan. Experimental and Numerical Study on Navigation Characteristics of Waterjet Propulsion Amphibian Vehicle [J]. Acta Armamentarii, 2024, 45(8): 2629-2645. |
[11] | GUO Junting, YU Yonggang. Complex Flow Field Characteristics inside Combustion Chamber During the Secondary Ignition Process of CTA [J]. Acta Armamentarii, 2024, 45(7): 2282-2293. |
[12] | YAN Zechen, YUE Songlin, QIU Yanyu, WANG Jianping, ZHAO Yuetang, SHI Jie, LI Xu. Improvement on the Calculation Method for Reflected Pressure of Shock Wave in Underwater Explosion [J]. Acta Armamentarii, 2024, 45(4): 1196-1207. |
[13] | REN Guowu, KANG Huaipu, ZHANG Shaolong, ZHANG Chongyu, CHEN Yongtao, TANG Tiegang. Investigating the Shockwave Collision of Different Metals Driven by Two-point Lateral Symmetric Initiation [J]. Acta Armamentarii, 2024, 45(11): 3892-3902. |
[14] | WANG Zehua, PAN Teng, LIU Han, ZHOU Hongyuan, HUANG Guangyan, ZHANG Hong. Research on the Mechanism of Chest Injury Caused by Explosion Shock Waves Based on THUMS Model [J]. Acta Armamentarii, 2024, 45(10): 3754-3764. |
[15] | LI Jing, SUN Xiaoxia, MA Xinglong, ZHU Wenxiang. Heat Transfer and Flow Characteristics of Open-cell Metal Foams [J]. Acta Armamentarii, 2024, 45(1): 122-130. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||