Acta Armamentarii ›› 2024, Vol. 45 ›› Issue (9): 3307-3316.doi: 10.12382/bgxb.2023.0886
WU Chunyao1, SONG Chunming1, LI Gan1,2,*(), XU Guangan3, HAN Tong4
Received:
2023-09-06
Online:
2023-12-17
Contact:
LI Gan
CLC Number:
WU Chunyao, SONG Chunming, LI Gan, XU Guangan, HAN Tong. Pressure Threshold and Influencing Factors of High-pressure Diaphragm Breaking[J]. Acta Armamentarii, 2024, 45(9): 3307-3316.
Add to citation manager EndNote|Ris|BibTeX
参数 | 数值 | 参数 | 数值 | |
---|---|---|---|---|
密度/(g·cm-3) | 7.84 | 强化后抗拉强度/MPa | 602 | |
屈服强度/MPa | 220 | 延伸率 | 45% |
Table 1 Basic material properties of high-strength alloy steel 1Cr18Ni9Ti
参数 | 数值 | 参数 | 数值 | |
---|---|---|---|---|
密度/(g·cm-3) | 7.84 | 强化后抗拉强度/MPa | 602 | |
屈服强度/MPa | 220 | 延伸率 | 45% |
试件 | 峰值荷载/N | 峰值应力/MPa | 凸起高度/mm |
---|---|---|---|
1-1 | 45531 | 31.37 | 5.56 |
1-2 | 48032 | 33.09 | 5.61 |
Table 2 Experimental data
试件 | 峰值荷载/N | 峰值应力/MPa | 凸起高度/mm |
---|---|---|---|
1-1 | 45531 | 31.37 | 5.56 |
1-2 | 48032 | 33.09 | 5.61 |
参数 | 数值 | 参数 | 数值 | |
---|---|---|---|---|
密度RO/(g·cm-3) | 7.84 | 硬化模量B/MPa | 400 | |
剪切模量G/GPa | 78.75 | 硬化指数N | 0.40 | |
弹性模量E/GPa | 198 | 比热CP/(J·(kg-1·℃-1)) | 831 | |
泊松比PR | 0.26 | 最大失效主应变MXEPS | 0.45 | |
初始屈服应力A/MPa | 220 |
Table 3 Stainless steel 1Cr18Ni9Ti material parameters[32]
参数 | 数值 | 参数 | 数值 | |
---|---|---|---|---|
密度RO/(g·cm-3) | 7.84 | 硬化模量B/MPa | 400 | |
剪切模量G/GPa | 78.75 | 硬化指数N | 0.40 | |
弹性模量E/GPa | 198 | 比热CP/(J·(kg-1·℃-1)) | 831 | |
泊松比PR | 0.26 | 最大失效主应变MXEPS | 0.45 | |
初始屈服应力A/MPa | 220 |
工况 | 开槽深度/mm | 破坏荷载/MPa |
---|---|---|
1 | 0 | 43.1 |
2 | 0.4 | 43.1 |
3 | 0.6 | 41.6 |
4 | 0.8 | 32.5 |
5 | 1.0 | 26.7 |
6 | 1.2 | 20.7 |
7 | 1.4 | 17.6 |
8 | 1.6 | 13.1 |
Table 4 Groove depth and failure load for each diaphragm
工况 | 开槽深度/mm | 破坏荷载/MPa |
---|---|---|
1 | 0 | 43.1 |
2 | 0.4 | 43.1 |
3 | 0.6 | 41.6 |
4 | 0.8 | 32.5 |
5 | 1.0 | 26.7 |
6 | 1.2 | 20.7 |
7 | 1.4 | 17.6 |
8 | 1.6 | 13.1 |
工况 | 开槽角度/(°) | 破坏荷载/MPa |
---|---|---|
1 | 30 | 34.1 |
2 | 45 | 33.5 |
3 | 60 | 32.5 |
4 | 75 | 31.8 |
5 | 90 | 30.9 |
6 | 105 | 30.6 |
7 | 120 | 30.3 |
8 | 150 | 30.2 |
Table 5 Groove angle and failure load for each diaphragm
工况 | 开槽角度/(°) | 破坏荷载/MPa |
---|---|---|
1 | 30 | 34.1 |
2 | 45 | 33.5 |
3 | 60 | 32.5 |
4 | 75 | 31.8 |
5 | 90 | 30.9 |
6 | 105 | 30.6 |
7 | 120 | 30.3 |
8 | 150 | 30.2 |
工况 | 开槽 深度/mm | 方形开槽峰值 应力/MPa | 圆弧形开槽峰值 应力/MPa |
---|---|---|---|
1 | 0.8 | 24.1 | 32.5 |
2 | 1.0 | 15.9 | 26.7 |
3 | 1.2 | 12.8 | 20.7 |
4 | 1.4 | 10.9 | 17.6 |
5 | 1.6 | 8.6 | 13.1 |
Table 6 Numerically simulated results of the influence of groove shape on failure load
工况 | 开槽 深度/mm | 方形开槽峰值 应力/MPa | 圆弧形开槽峰值 应力/MPa |
---|---|---|---|
1 | 0.8 | 24.1 | 32.5 |
2 | 1.0 | 15.9 | 26.7 |
3 | 1.2 | 12.8 | 20.7 |
4 | 1.4 | 10.9 | 17.6 |
5 | 1.6 | 8.6 | 13.1 |
[1] |
马源, 丁信伟. 爆破片选用指南[J]. 压力容器, 1994(5):70-74.
|
|
|
[2] |
仵可, 朱玉荣, 钱秉文, 等. 一种测量二级轻气炮金属膜片破膜压力的方法[J]. 现代应用物理, 2022, 13(2):184-189.
|
|
|
[3] |
鲁寨军, 冯书颖, 刘杰夫, 等. 十字开槽正拱型爆破片爆破性能影响因素研究[J]. 工程爆破, 2023, 29(4):114-121.
|
|
|
[4] |
鲁寨军, 王灿, 钟睦, 等. 十字开槽爆破片超高压爆破实验与仿真研究[J]. 工程爆破, 2021, 27(4):14-21.
|
|
|
[5] |
|
[6] |
|
[7] |
|
[8] |
徐明, 封锋, 曹钦柳, 等. 小型双脉冲发动机金属膜片的承压与破裂[J]. 爆炸与冲击, 2020, 40(4):112-122.
|
|
|
[9] |
|
[10] |
|
[11] |
徐锋, 刘应华, 杨超. 升压速率对正拱形爆破片爆破压力影响的实验研究[J]. 压力容器, 2021, 38(1):9-14.
|
|
|
[12] |
|
[13] |
沈吟青, 江坤, 张成. 膜片式轻气炮破膜做功机理研究[J]. 弹道学报, 2019, 31(2):19-24.
doi: 10.12115/j.issn.1004-499X(2019)02-004 |
|
|
[14] |
|
[15] |
|
[16] |
金巨年. 防爆薄膜极限强度(爆破压力)及其变形的研究[J]. 大连工学院学报, 1962(1):145-169.
|
|
|
[17] |
杨超, 惠虎, 黄淞. 超高压爆破片设计爆破压力的理论计算与数值模拟的对比研究[J]. 压力容器, 2020, 37(3):21-26,40.
|
|
|
[18] |
罗代明, 惠虎, 周伟明, 等. 反拱带刀形爆破片外压失稳分析[J]. 中国特种设备安全, 2012, 28(3):11-14.
|
|
|
[19] |
华自力, 余同希. 在冲击载荷作用下结构大变形的挠度估计[J]. 爆炸与冲击, 1988, 8(4):306-315.
|
|
|
[20] |
|
[21] |
|
[22] |
|
[23] |
|
[24] |
余同希. 塑性弯曲理论及其应用[M]. 北京: 科学出版社,1992.
|
|
|
[25] |
杨俊良. 1Cr18Ni9Ti钢的抗冲击性能实验研究[J]. 舰船科学技术, 2007(4):82-85.
|
|
|
[26] |
|
[27] |
余同希, 卢国兴, 张雄. 能量吸收:结构与材料的力学行为和塑性分析[M]. 北京: 科学出版社, 2019.
|
|
|
[28] |
徐秉业. 应用弹塑性力学[M]. 北京: 清华大学出版社,1995.
|
|
|
[29] |
尚兵, 盛精, 王宝珍, 等. 不锈钢材料的动态力学性能及本构模型[J]. 爆炸与冲击, 2008, 28(6):527-531.
|
|
|
[30] |
|
[31] |
张杜江, 赵振宇, 贺良, 等. 基于Johnson-Cook本构模型的高强度装甲钢动态力学性能参数标定及验证[J]. 兵工学报, 2022, 43(8):1966-1976.
doi: 10.12382/bgxb.2021.0409 |
|
|
[32] |
|
[1] | YANG Guitao, GUO Rui, SONG Pu, GAO Guangfa, YU Yanghui. The Structural Parameters of Combined Liner for Tandem Explosively Formed Projectile [J]. Acta Armamentarii, 2024, 45(9): 3056-3070. |
[2] | LU Hang, LIU Haoran, CHEN Tairan, HUANG Biao, WANG Guoyu, CHEN Huiyan. Experimental and Numerical Study on Navigation Characteristics of Waterjet Propulsion Amphibian Vehicle [J]. Acta Armamentarii, 2024, 45(8): 2629-2645. |
[3] | GUO Junting, YU Yonggang. Complex Flow Field Characteristics inside Combustion Chamber During the Secondary Ignition Process of CTA [J]. Acta Armamentarii, 2024, 45(7): 2282-2293. |
[4] | YAN Zechen, YUE Songlin, QIU Yanyu, WANG Jianping, ZHAO Yuetang, SHI Jie, LI Xu. Improvement on the Calculation Method for Reflected Pressure of Shock Wave in Underwater Explosion [J]. Acta Armamentarii, 2024, 45(4): 1196-1207. |
[5] | LI Jing, SUN Xiaoxia, MA Xinglong, ZHU Wenxiang. Heat Transfer and Flow Characteristics of Open-cell Metal Foams [J]. Acta Armamentarii, 2024, 45(1): 122-130. |
[6] | LEI Juanmian, GAO Yi, YONG Zheng. Numerical Investigation of the Jet Interference Characteristics of a Lateral-jet-controlled Spinning Missile [J]. Acta Armamentarii, 2024, 45(1): 105-121. |
[7] | WANG Xinyu, JIANG Chunlan, WANG Zaicheng, FANG Yuande. Research on the Pressure Relief Structure of JEO Shaped Charge Warhead during Cook-off [J]. Acta Armamentarii, 2024, 45(1): 1-14. |
[8] | LEI Te, WU Yuwen, XU Gao, QIU Yanming, KANG Chaohui, WENG Chunsheng. Study on Three-dimensional Rotating Detonation Flow Field Structures Based on Large Eddy Simulation [J]. Acta Armamentarii, 2024, 45(1): 85-96. |
[9] | ZHOU Guangpan, WANG Rong, WANG Mingyang, DING Jianguo, ZHANG Guokai. Experiment and Numerical Simulation of Explosion Resistance Performance of Main Girder of Self-anchored Suspension Bridge Coated with Polyurea [J]. Acta Armamentarii, 2023, 44(S1): 9-25. |
[10] | KOU Yongfeng, YANG Kun, ZHANG Bin, XIAO Yiwen, LU Jianying, CHEN Lang. Research on Thermal Safety of Warhead Charge Based on Cook-off Experimental and Numerical Simulation [J]. Acta Armamentarii, 2023, 44(S1): 41-49. |
[11] | YU Shuangyang, PENG Yong. Numerical Simulation of Temperature Rise of 4340 Steel Projectile Penetrating into 45# Steel Target [J]. Acta Armamentarii, 2023, 44(S1): 144-151. |
[12] | YU Wenjun, CHEN Shengyun, DENG Shuxin, YU Bingbing, JIN Dongyan. Numerical Simulation of the Propagation Law of Explosion Shock Wave in Turning Tunnel [J]. Acta Armamentarii, 2023, 44(S1): 180-188. |
[13] | DU Yonggang, WANG Xuesong, WAN Zhihua. Study of Screw Drive Failure Mechanisms in a Flight Aid Carrier [J]. Acta Armamentarii, 2023, 44(7): 2033-2040. |
[14] | GAO Tiesuo, JIANG Tao, FU Yang’aoxiao, DING Mingsong, LIU Qingzong, DONG Weizhong, XU Yong, LI Peng. Plasma Distribution and Its Effect on Electromagnetic Wave Transmission across Vehicles of Varying Sizes [J]. Acta Armamentarii, 2023, 44(6): 1809-1819. |
[15] | LIU Weizhao, LI Rong, NIU Lanjie, SHI Kunlin. Research Status and Prospect of Hard-Target Penetration Initiation Control Technology [J]. Acta Armamentarii, 2023, 44(6): 1602-1619. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||