Acta Armamentarii ›› 2024, Vol. 45 ›› Issue (S2): 231-239.doi: 10.12382/bgxb.2024.0683
Previous Articles Next Articles
YUN Kang1, DANG Feng1, HAN Xiangdong2,*(), LI Yunchao1, LIU Yuzhao3, LI Lu1, CHENG Cheng1
Received:
2024-08-12
Online:
2024-12-12
Contact:
HAN Xiangdong
YUN Kang, DANG Feng, HAN Xiangdong, LI Yunchao, LIU Yuzhao, LI Lu, CHENG Cheng. Key Technology of Safe Disposal of Unexploded Ordnance[J]. Acta Armamentarii, 2024, 45(S2): 231-239.
Add to citation manager EndNote|Ris|BibTeX
序号 | 方法名称 | 原理 | 应用优势 |
---|---|---|---|
1 | 爆破销毁 | 通过外部炸药等方式进行引爆 | 处理效率高,适合任务量大 |
2 | 冷冻处理 | 采用液氮进行冷冻处理,使其失效 | 不涉火,安全性高 |
3 | 高压水 切除 | 利用高压液体切割弹体外壳,溶解并冲刷炸药 | 不涉火,安全性高 |
4 | 射击销毁 | 对于敏感弹药、电磁敏感及热敏感弹药,击毁UXO引信 | 避免人员近身接触 |
5 | 撞毁UXO 引信 | 撞击破坏引信机械装置,使其失去引爆功能 | 提高UXO下一步处理的安全性 |
6 | 烧毁 | 利用高温引燃或引爆炸药,适用于薄壁弹药 | 处理效率高,适合任务力量大 |
Table 1 Disposal methods of unexploded ordnance
序号 | 方法名称 | 原理 | 应用优势 |
---|---|---|---|
1 | 爆破销毁 | 通过外部炸药等方式进行引爆 | 处理效率高,适合任务量大 |
2 | 冷冻处理 | 采用液氮进行冷冻处理,使其失效 | 不涉火,安全性高 |
3 | 高压水 切除 | 利用高压液体切割弹体外壳,溶解并冲刷炸药 | 不涉火,安全性高 |
4 | 射击销毁 | 对于敏感弹药、电磁敏感及热敏感弹药,击毁UXO引信 | 避免人员近身接触 |
5 | 撞毁UXO 引信 | 撞击破坏引信机械装置,使其失去引爆功能 | 提高UXO下一步处理的安全性 |
6 | 烧毁 | 利用高温引燃或引爆炸药,适用于薄壁弹药 | 处理效率高,适合任务力量大 |
[1] |
|
[2] |
|
[3] |
|
[4] |
|
[5] |
|
[6] |
谢兴博, 周向阳, 李裕春, 等. 未爆弹药处置技术[M]. 北京: 国防工业出版社, 2021.
|
|
|
[7] |
|
[8] |
|
[9] |
|
[10] |
|
[11] |
|
[12] |
|
[13] |
|
[14] |
张洋洋, 赵洪山, 彭伟, 等. 国内外防弹标准防护等级的研究与对比[J]. 兵工学报, 2022, 43(9):2017-2036.
|
|
|
[15] |
史明明, 万丽强, 陆鹏, 等. 国内外报废弹药处理技术发展现状[J]. 火工品, 2022(3):75-80.
|
|
|
[16] |
|
[17] |
|
[18] |
曹贺全, 张广明, 孙素杰, 等. 装甲车辆防护技术研究现状与发展[J]. 兵工学报, 2012, 33(12):1549-1554.
|
|
|
[19] |
|
[20] |
|
[21] |
|
[22] |
|
[23] |
|
[24] |
|
[25] |
|
[26] |
|
[27] |
|
[28] |
|
[29] |
|
[30] |
|
[31] |
|
[32] |
|
[33] |
|
[34] |
|
[35] |
|
[36] |
|
[37] |
|
[38] |
|
[39] |
|
[40] |
|
[41] |
|
[42] |
|
[43] |
|
[44] |
|
[45] |
|
[46] |
|
[47] |
|
[48] |
|
[49] |
|
[50] |
|
[51] |
|
[52] |
|
[53] |
|
[54] |
刘荣林. 海洋磁力仪在某近岸海域未爆弹探测中的应用[J]. 海洋测绘, 2021, 41(4):48-52.
|
|
|
[55] |
|
[56] |
|
[57] |
|
[58] |
|
[59] |
|
[60] |
|
[61] |
|
[62] |
|
[63] |
|
[64] |
|
[65] |
田轩, 王晓峰, 黄亚峰, 等. 国内外废旧火炸药绿色处理技术进展[J]. 兵工自动化, 2015, 34(4):81-84.
|
|
|
[66] |
|
[67] |
|
[68] |
|
[69] |
|
[70] |
|
[71] |
|
[72] |
张勇, 肖正明, 段浩, 等. 水下中远场爆炸冲击波作用下航行体表面动态响应分析[J]. 兵工学报, 2024, 45(7):2341-2350.
doi: 10.12382/bgxb.2023.0306 |
doi: 10.12382/bgxb.2023.0306 |
|
[73] |
|
[74] |
|
[75] |
李旭, 岳松林, 邱艳宇, 等. 近场水下爆炸气泡与混凝土组合板相互作用的试验研究[J]. 兵工学报, 2023, 44(增刊1):79-89.
|
doi: 10.12382/bgxb.2023.1074 |
|
[76] |
常文平, 杜仕国, 江劲勇, 等. 国外废弃含能材料非含能化处理技术的现状[J]. 河北化工, 2010, 33(11):26-28.
|
|
|
[77] |
姜金佐, 徐翔云, 任王军, 等. 战斗部动态爆炸破片威力场综述[J]. 兵工学报, 2023, 44(增刊1):1-8.
|
|
|
[78] |
李金明, 王国栋, 张玉令, 等. 报废弹药拆卸销毁安全性探讨[J]. 工程爆破, 2016, 22(1):46-48.
|
|
|
[79] |
曹海庆, 刘万波, 白冬龙. 报废弹药销毁处理的安全防范措施[J]. 价值工程, 2012, 31(28):320-321.
|
|
|
[80] |
|
[81] |
杨磊, 刘瀚, 黄广炎, 等. 典型防爆装备对TNT爆炸冲击波的防护性能[J]. 兵工学报, 2023, 44(10):2871-2884.
doi: 10.12382/bgxb.2023.0281 |
doi: 10.12382/bgxb.2023.0281 |
|
[82] |
郗文博, 同剑, 赵云涛, 等. 便携式非接触聚能射流引爆器销毁废旧弹药[J]. 工程爆破, 2020, 26(3):75-78.
|
|
|
[83] |
王斌, 林大能, 马海鹏, 等. 废旧炸弹爆炸销毁的安全技术[C]// 第九届全国工程爆破学术会议论文集.青岛, 山东: 中国工程爆破协会和中国力学学会, 2024:893-898.
|
|
|
[84] |
宋桂飞, 李良春, 王韶光, 等. 激光销毁危险爆炸物应用研究进展[J]. 激光与红外, 2014, 44(10):1075-1078.
|
|
|
[85] |
伍凌川, 雷林, 张博, 等. 废旧弹箭高压水射流处理技术国外应用现状[J]. 兵工自动化, 2016, 35(10):77-79.
|
|
|
[86] |
李全俊, 王国辉, 雷林, 等. 废旧弹药拆分技术现状与发展[J]. 兵工自动化, 2018, 37(5):93-96.
|
|
|
[87] |
|
[88] |
巩铭扬, 黄鑫, 严良俊, 等. 基于多频电磁法水下目标体探测能力分析[J]. 地球物理学进展, 2015, 7(13):1-13.
|
|
|
[89] |
夏福君, 宋桂飞, 肖东胜, 等. 报废弹药绿色无害化处理技术发展思路探讨[J]. 兵工自动化, 2011, 30(5):94-96.
|
|
|
[90] |
王东生, 王方晓. 爆炸作业从野外转变到室内的有关经验[J]. 安全与环境学报, 2004, 4(增刊1):122-123.
|
|
|
[91] |
张怀智, 徐建国, 刘鹏, 等. 报废弹药冷冻处理法及关键技术[J]. 四川兵工学报, 2009, 30(3):103-104.
|
|
|
[92] |
钟树良, 李振泉, 柏平, 等. 水射流切割炸药的安全性及试验研究[J]. 四川兵工学报, 2006(3):44-46.
|
|
|
[93] |
张国文, 陈新发. 炸药模拟件水射流切割参数的试验研究[J]. 含能材料, 2001, 9(1):24-27.
|
|
|
[94] |
张世林, 周春桂, 王志军, 等. 一种新型水射流切割器成型的仿真研究[J]. 爆破器材, 2011, 40(2):5-7.
|
|
|
[95] |
邓松圣, 戴飞, 庞成, 等. 磨料水射流切割技术在煤矿生产中的安全应用探讨[J]. 矿业安全与环保, 2023, 50(1):115-118.
|
|
|
[96] |
doi: 10.1007/s00128-018-2403-8 pmid: 30120504 |
[97] |
张致豪. 弹药销毁固体废渣再利用研究[D]. 沈阳: 沈阳理工大学, 2020.
|
|
[1] | MA Zhiwei, LI Yuan, GUO Mingzhe, SUN Mou. Current Status and Issues of the Safety Protection System for the Production Systems Engineering of Burning Explosives [J]. Acta Armamentarii, 2024, 45(S2): 293-304. |
[2] | WANG Fuan, ZHAO Yuanyuan, SUN Cheng, WU Siqi, GUO Jinqiu. Hazard Evaluation Method for Burning Explosives Production Equipment [J]. Acta Armamentarii, 2024, 45(S1): 331-338. |
[3] | JIANG Xinli, ZHANG Guokai, HE Yong, YAO Jian, WANG Zhen, WU Yuxin, LIU Ju, WANG Mingyang. Afterburning Effect of Thermobaric Explosives in Confined Space [J]. Acta Armamentarii, 2024, 45(8): 2520-2530. |
[4] | FAN Ruijun, WANG Xiaofeng, WANG Jinying, ZHOU Jie, WANG Shaohong, PI Aiguo. Effect of Active Material Content on the Near-field Shock Wave of Low Collateral Damage Bomb [J]. Acta Armamentarii, 2024, 45(5): 1613-1624. |
[5] | LI Yuxue, TIAN Xiaotao, MA Yifan, LIU Peijin, YAN Qilong. Thermal Interaction Mechanisms of Black Powders with Different Particle Sizes and Cellulose as Packing Material during Ignition [J]. Acta Armamentarii, 2024, 45(5): 1582-1592. |
[6] | SHI Junfei, QIAN Linfang, CHEN Guangsong, YIN Qiang, LIU Daokun, LI Zhonggang. Research on the Procedural Burning Characteristics of Cased Telescoped Ammunition Based on Digital Image Correlation Principle [J]. Acta Armamentarii, 2024, 45(4): 1047-1059. |
[7] | ZHANG Xuexue, XUE Zhihua, NIE Hongqi, YAN Qilong. Preparation of Energetic Burning Rate Inhibitor and Its Negative Catalytic Effect on AP Decomposition [J]. Acta Armamentarii, 2024, 45(1): 15-25. |
[8] | TIAN Zhongliang, LI Junwei, HE Ye, XU Tuanwei, DING Miao, WANG Ningfei. Analysis of Interior Ballistic Characteristics of Conical Three-Dimensional Charge Column Under Lateral Overload [J]. Acta Armamentarii, 2023, 44(7): 1896-1907. |
[9] | WU Ling, WANG Pikun, LU Faxing. Applications of Hovering Deep Bombs Based on Predetermined Probability [J]. Acta Armamentarii, 2023, 44(4): 1217-1224. |
[10] | SUN Dechuan, XIAN Guang. Key Technology for Ultrasonic Measurement of Burning Rate in Large-scale Solid Rocket Motors [J]. Acta Armamentarii, 2023, 44(4): 1097-1106. |
[11] | ZHAO Xin, JI Yongxiang, LIU Gang, LIU Shefeng, LUO Xibin, NING Xiaolei. Self-Destruction Time Distribution of Fuze Based on Functional Analysis [J]. Acta Armamentarii, 2023, 44(3): 757-762. |
[12] | GAO Zhao, WANG Yaqiong, ZENG Junjie, REN Shubo, ZHANG Lei, GAO Zihe, TAO Ying. Design of Distributed Destruction-Resistant Routing Algorithm for Space-Based Self-Organizing Network [J]. Acta Armamentarii, 2022, 43(S2): 126-132. |
[13] | WANG Ge, ZHANG Chun, LIN Zhiwei, WANG Baohua, TAN Hu, CHEN Chen. Research on's Opening Distance of AHEAD Ammunition [J]. Acta Armamentarii, 2022, 43(S1): 115-120. |
[14] | ZHOU Baihang, TAO Ruyi, WANG Hao, RUAN Wenjun. 3-D Inner Flow Field Characteristics of Ladder-shaped Multiple Charge Rocket Motor with Erosive Burning [J]. Acta Armamentarii, 2021, 42(8): 1604-1612. |
[15] | DUAN Zhuoping, BAI Zhiling, BAI Mengjing, HUANG Fenglei. Burning-crack Networks Model for Combustion Reaction Growth of Solid Explosives with Strong Confinement [J]. Acta Armamentarii, 2021, 42(11): 2291-2299. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||