Acta Armamentarii ›› 2023, Vol. 44 ›› Issue (12): 3793-3804.doi: 10.12382/bgxb.2023.0278
Special Issue: 爆炸冲击与先进防护
Previous Articles Next Articles
REN Guang, WU Haijun, DONG Heng*(), LÜ Yingqing, HUANG Fenglei
Received:
2023-03-31
Online:
2023-12-30
Contact:
DONG Heng
CLC Number:
REN Guang, WU Haijun, DONG Heng, LÜ Yingqing, HUANG Fenglei. Deformable Special-Shaped Projectile Impacting a High-strength Rock:Experiments and Analysis[J]. Acta Armamentarii, 2023, 44(12): 3793-3804.
Add to citation manager EndNote|Ris|BibTeX
C | O | N | H | Nb | Fe | Si | W | Ta |
---|---|---|---|---|---|---|---|---|
0.0070 | 0.0075 | 0.0020 | 0.0020 | 0.0003 | 0.0003 | 0.0010 | 0.0040 | 余量 |
Table 1 Chemical composition of tantalum rod %
C | O | N | H | Nb | Fe | Si | W | Ta |
---|---|---|---|---|---|---|---|---|
0.0070 | 0.0075 | 0.0020 | 0.0020 | 0.0003 | 0.0003 | 0.0010 | 0.0040 | 余量 |
密度/ (g·cm-3) | 热膨胀系数 (<100℃) | 熔点/℃ | 泊松比 | 弹性模量/ GPa | 屈服强度 (-100℃)/MPa | 屈服强度 (500℃)/MPa |
---|---|---|---|---|---|---|
16.6 | 6.5×10-6 | 2995.0 | 0.3 | 195.0 | 600.0 | 360.0 |
Table 2 Basic physical and mechanical properties of tantalum (20℃)
密度/ (g·cm-3) | 热膨胀系数 (<100℃) | 熔点/℃ | 泊松比 | 弹性模量/ GPa | 屈服强度 (-100℃)/MPa | 屈服强度 (500℃)/MPa |
---|---|---|---|---|---|---|
16.6 | 6.5×10-6 | 2995.0 | 0.3 | 195.0 | 600.0 | 360.0 |
弹体 类型 | 弹体质 量/g | vm/ (m·s-1) | vr/ (m·s-1) | dc/ mm | 破碎粒 度/mm | G/% |
---|---|---|---|---|---|---|
10.7 | 71.4 | 11.0 | 9.0 | ≤1.0 | 2.4 | |
T1 | 10.7 | 111.2 | 12.0 | 11.5 | ≤3.0 | 1.2 |
10.7 | 279.0 | 22.9 | 17.5 | ≤12.0 | 0.7 | |
15.4 | 78.0 | 11.0 | 12.0 | ≤1.0 | 2.0 | |
T2 | 15.4 | 110.6 | 15.6 | 16.5 | ≤3.0 | 2.0 |
15.4 | 280.0 | 26.6 | 33.0 | ≤10.0 | 1.0 | |
11.7 | 82.5 | 20.5 | 8.0 | ≤1.0 | 6.6 | |
T3 | 11.7 | 121.0 | 22.0 | 9.5 | ≤2.0 | 3.4 |
11.8 | 260.0 | 34.7 | 13.5 | ≤5.0 | 1.8 |
Table 3 Experimental results of low-speed impact of three types of projectiles on basalt target with uniaxial compression strength of 180MPa
弹体 类型 | 弹体质 量/g | vm/ (m·s-1) | vr/ (m·s-1) | dc/ mm | 破碎粒 度/mm | G/% |
---|---|---|---|---|---|---|
10.7 | 71.4 | 11.0 | 9.0 | ≤1.0 | 2.4 | |
T1 | 10.7 | 111.2 | 12.0 | 11.5 | ≤3.0 | 1.2 |
10.7 | 279.0 | 22.9 | 17.5 | ≤12.0 | 0.7 | |
15.4 | 78.0 | 11.0 | 12.0 | ≤1.0 | 2.0 | |
T2 | 15.4 | 110.6 | 15.6 | 16.5 | ≤3.0 | 2.0 |
15.4 | 280.0 | 26.6 | 33.0 | ≤10.0 | 1.0 | |
11.7 | 82.5 | 20.5 | 8.0 | ≤1.0 | 6.6 | |
T3 | 11.7 | 121.0 | 22.0 | 9.5 | ≤2.0 | 3.4 |
11.8 | 260.0 | 34.7 | 13.5 | ≤5.0 | 1.8 |
弹型 | 弹体 质量/g | 入射速度/ (m·s-1) | 破碎区 直径/mm | 开坑深 度/mm | 碎岩质 量/g | N |
---|---|---|---|---|---|---|
10.6 | 453.0 | 22.0 | 3.0 | 0.8 | 7.3 | |
T1 | 10.5 | 458.0 | 28.0 | 4.0 | 2.2 | 7.0 |
10.6 | 599.0 | 32.0 | 7.0 | 2.4 | 4.6 | |
10.5 | 600.0 | 33.0 | 7.0 | 2.8 | 4.7 | |
15.7 | 455.0 | 38.0 | 6.0 | 10.2 | 6.3 | |
T2 | 15.7 | 465.0 | 40.0 | 7.0 | 11.7 | 5.7 |
15.6 | 612.0 | 57.0 | 12.0 | 19.9 | 4.8 | |
15.7 | 610.0 | 55.0 | 11.0 | 19.8 | 5.0 |
Table 4 Experimental results of high-speed impacts of T1 and T2 projectiles on basalt target with uniaxial compression strength of 180MPa
弹型 | 弹体 质量/g | 入射速度/ (m·s-1) | 破碎区 直径/mm | 开坑深 度/mm | 碎岩质 量/g | N |
---|---|---|---|---|---|---|
10.6 | 453.0 | 22.0 | 3.0 | 0.8 | 7.3 | |
T1 | 10.5 | 458.0 | 28.0 | 4.0 | 2.2 | 7.0 |
10.6 | 599.0 | 32.0 | 7.0 | 2.4 | 4.6 | |
10.5 | 600.0 | 33.0 | 7.0 | 2.8 | 4.7 | |
15.7 | 455.0 | 38.0 | 6.0 | 10.2 | 6.3 | |
T2 | 15.7 | 465.0 | 40.0 | 7.0 | 11.7 | 5.7 |
15.6 | 612.0 | 57.0 | 12.0 | 19.9 | 4.8 | |
15.7 | 610.0 | 55.0 | 11.0 | 19.8 | 5.0 |
[1] |
李谦, 高辉, 谢兰兰, 等. 月球钻探取样技术研究进展[J]. 钻探工程, 2021 48(1) 15-34.
|
|
|
[2] |
doi: 10.1007/s11214-017-0338-8 URL |
[3] |
doi: 10.1016/j.ijimpeng.2014.10.002 URL |
[4] |
吕映庆, 陈南勋, 武海军, 等. 弹体高速侵彻超高性能混凝土靶机理[J]. 兵工学报, 2022, 43(1): 37-47
doi: 10.3969/j.issn.1000-1093.2022.01.005 |
doi: 10.3969/j.issn.1000-1093.2022.01.005 |
|
[5] |
张雪岩, 武海军, 李金柱, 等. 弹体高速侵彻两种强度混凝土靶的对比研究[J]. 兵工学报, 2019, 40(2): 276-283.
doi: 10.3969/j.issn.1000-1093.2019.02.007 |
doi: 10.3969/j.issn.1000-1093.2019.02.007 |
|
[6] |
尹放林, 严少华, 钱七虎, 等. 弹体侵彻深度计算公式对比研究[J]. 爆炸与冲击, 2000(1): 79-82.
|
|
|
[7] |
doi: 10.1016/j.ijimpeng.2013.08.003 URL |
[8] |
|
[9] |
doi: 10.1016/j.ijimpeng.2020.103629 URL |
[10] |
韩晶, 王华, 牛新立, 等. 一种用于破碎岩土的异型弹芯撞击响应分析[J]. 北京航空航天大学学报, 2013, 39(12): 1619-1623.
|
|
|
[11] |
doi: 10.1016/j.matdes.2010.05.027 URL |
[12] |
doi: 10.1016/j.ijimpeng.2019.103410 URL |
[13] |
doi: 10.1016/j.ijimpeng.2016.04.013 URL |
[14] |
彭建祥, 李英雷, 李大红. 纯钽动态本构关系的实验研究[J]. 爆炸与冲击, 2003(2): 183-187.
|
|
|
[15] |
王玥. 工业纯超细晶钽和钨的塑性变形及断裂行为研究[D]. 南京: 南京理工大学, 2018.
|
|
|
[16] |
范才河, 胡泽艺, 陈喜红, 等. 玄武岩颗粒增强7A04铝基复合材料的界面结构及力学行为[J]. 中国有色金属学报, 2020, 30(1): 40-47.
|
|
|
[17] |
武仁杰, 李海波, 李晓锋, 等. 冲击载荷作用下层状岩石破碎能耗及块度特征[J]. 煤炭学报, 2020, 45(3): 1053-1060.
|
|
|
[18] |
doi: 10.1016/j.ijimpeng.2020.103670 URL |
[19] |
|
[20] |
闪雨. 弹体非正侵彻混凝土质量侵蚀与运动轨迹研究[D]. 北京: 北京理工大学, 2015.
|
|
|
[21] |
刘海鹏, 高世桥, 金磊, 等. 弹侵彻混凝土靶面成坑的分阶段分析[J]. 兵工学报, 2009, 30(增刊2): 52-56.
|
|
[1] | YAO Menglei, HOU Hailiang, LI Dian, XIE Yue. Dynamic Response of Y-shaped Sandwich Plate and the Influence Factors of Anti Explosion Performance Under the Explosion Load in the Warship Cabin [J]. Acta Armamentarii, 2024, 45(3): 837-854. |
[2] | CHEN Hui, LIU Jianhu, CHEN Xuebing, HUANG Yaping, CAI Rongkun. Research on Experimental Method for Impact Strength of Large Load FRP Supporting Element of a Shipboard Equipment [J]. Acta Armamentarii, 2024, 45(3): 957-962. |
[3] | GAO Maoguo, LIU Rui, GUO Yansong, GENG Hengheng, CHEN Pengwan. Dynamic Deformation, Damage and Failure Behavior of High Entropy HfZrTiTaAl Alloy [J]. Acta Armamentarii, 0, (): 0-0. |
[4] | CAI Zhicheng, XU Zejian, GUO Baoqiao, LIU Yan, HUANG Fenglei. Dynamic Bending Fracture Behavior of Zirconia Ceramic [J]. Acta Armamentarii, 0, (): 0-0. |
[5] | NING Jianguo, LI Yuhui, YANG Shuai, XU Xiangzhao. Research on Constitutive Model of Low-Temperature Concrete with Damage under Impact Load [J]. Acta Armamentarii, 0, (): 0-0. |
[6] | TANG Kui, WANG Jinxiang, LIU Liangtao, YANG Ming. Study on the Mechanism of Secondary Penetration of Long-rod Projectile and Its Influencing Factors [J]. Acta Armamentarii, 2023, 44(12): 3707-3718. |
[7] | WANG Jirui, WANG Chengxin, WANG Yini, TANG Kui, BO Qile. Equivalent Strength of Armour Steel against High-velocity Penetration of Long-rod Projectile [J]. Acta Armamentarii, 2023, 44(12): 3755-3770. |
[8] | ZHANG Zhonghao, WANG Wei, ZHANG Guokai, WANG Zhen, WU Gu. Study on Deterioration and Damage Performance of Concrete at Different High Temperatures [J]. Acta Armamentarii, 2023, 44(S1): 152-159. |
[9] | YANG Guanxia, WU Haijun, TIAN Ze, DONG Heng, HUANG Fenglei. The Impact Load Characteristic and Regulation Mechanism of Metal/polyurethane Waveform Generator Composite Projectile [J]. Acta Armamentarii, 0, (): 0-0. |
[10] | QIN Bin, ZANG Liwei, GAO Tong, AN Shuo, LUO Xiangna. Similaraties of Applying Conducted Electrical Weapon to Living Target and to Salt Containing Gelatin Simulation Target [J]. Acta Armamentarii, 2022, 43(9): 2129-2135. |
[11] | KANG Wei, XU Peng, BU Weiping, YUE Yanxian, WANG Lizhen, FAN Yubo. Mechanical Testing of Biological Soft Tissue and Related Theoretical Research [J]. Acta Armamentarii, 2022, 43(9): 2164-2171. |
[12] | ZHANG Dujiang, ZHAO Zhenyu, HE Liang, REN Jianwei, QIANG Lusheng, ZHOU Yilai. Calibration and Verification of Dynamic Mechanical Properties of High-strength Armored Steel Based on Johnson-Cook ConstitutiveModel [J]. Acta Armamentarii, 2022, 43(8): 1966-1976. |
[13] | DANG Quanyong, GE Yanxin, GAO Yubo. Dynamic Mechanical Properties of Al2O3/SiC Composite Ceramic Subjected to Impact Loading [J]. Acta Armamentarii, 2022, 43(1): 175-180. |
[14] | WU Qian, GUO Weiguo. Calibration of Sensitivity Coefficient of Three-dimensional High-g Accelerometer Based on Vector Decomposition [J]. Acta Armamentarii, 2021, 42(7): 1535-1543. |
[15] | LI Juncheng, CHEN Gang, HUANG Fenglei, LU Yonggang, TAN Xiaojun, HUANG Weiyin. Impact Deformation Features and Load Characteristics of Truncated Ogival Nose Projectile under Taylor Impact [J]. Acta Armamentarii, 2021, 42(6): 1157-1168. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||