Acta Armamentarii ›› 2024, Vol. 45 ›› Issue (5): 1648-1662.doi: 10.12382/bgxb.2022.0944
Previous Articles Next Articles
YANG Guanxia, WU Haijun, TIAN Ze, DONG Heng*(), HUANG Fenglei
Received:
2022-10-18
Online:
2023-01-10
Contact:
DONG Heng
CLC Number:
YANG Guanxia, WU Haijun, TIAN Ze, DONG Heng, HUANG Fenglei. Impact Load Characteristic and Regulation Mechanism of Metal/polyurethane Waveform Generator Composite Projectile[J]. Acta Armamentarii, 2024, 45(5): 1648-1662.
Add to citation manager EndNote|Ris|BibTeX
D/ mm | l/H=0.5 | l/H=0.6 | ||||
---|---|---|---|---|---|---|
E'/ (kN·mm) | E/ (kN·mm) | δ | E'/ (kN·mm) | E/ (kN·mm) | δ | |
32.5 | 1.805 | 9.343 | 0.192 | 3.005 | 14.806 | 0.202 |
39.0 | 2.43 | 12.718 | 0.190 | 3.967 | 20.033 | 0.197 |
48.0 | 3.801 | 19.414 | 0.195 | 6.384 | 30.757 | 0.207 |
58.0 | 5.795 | 29.009 | 0.200 | 9.594 | 45.436 | 0.211 |
Table 2 Energy dissipation ratioes of PWGs with different diameters(H=25mm)
D/ mm | l/H=0.5 | l/H=0.6 | ||||
---|---|---|---|---|---|---|
E'/ (kN·mm) | E/ (kN·mm) | δ | E'/ (kN·mm) | E/ (kN·mm) | δ | |
32.5 | 1.805 | 9.343 | 0.192 | 3.005 | 14.806 | 0.202 |
39.0 | 2.43 | 12.718 | 0.190 | 3.967 | 20.033 | 0.197 |
48.0 | 3.801 | 19.414 | 0.195 | 6.384 | 30.757 | 0.207 |
58.0 | 5.795 | 29.009 | 0.200 | 9.594 | 45.436 | 0.211 |
H/ mm | l/H=0.5 | l/H=0.6 | ||||
---|---|---|---|---|---|---|
E'/ (kN·mm) | E/ (kN·mm) | δ | E'/ (kN·mm) | E/ (kN·mm) | δ | |
12 | 4.475 | 15.811 | 0.283 | 7.818 | 25.223 | 0.310 |
25 | 6.024 | 29.231 | 0.206 | 9.70 | 45.78 | 0.212 |
37 | 8.886 | 44.55 | 0.199 | 14.318 | 70.367 | 0.203 |
50 | 10.81 | 61.906 | 0.175 | 20.476 | 101.53 | 0.202 |
Table 3 Energy dissipation ratioes of PWGs with different thicknesses(D=58mm)
H/ mm | l/H=0.5 | l/H=0.6 | ||||
---|---|---|---|---|---|---|
E'/ (kN·mm) | E/ (kN·mm) | δ | E'/ (kN·mm) | E/ (kN·mm) | δ | |
12 | 4.475 | 15.811 | 0.283 | 7.818 | 25.223 | 0.310 |
25 | 6.024 | 29.231 | 0.206 | 9.70 | 45.78 | 0.212 |
37 | 8.886 | 44.55 | 0.199 | 14.318 | 70.367 | 0.203 |
50 | 10.81 | 61.906 | 0.175 | 20.476 | 101.53 | 0.202 |
D/mm | α/(N·m-1) | β/(N·m-1) | γ |
---|---|---|---|
32.5 | 84252.85 | 509.78 | 317.51 |
39.0 | 122304.79 | 624.97 | 327.94 |
48.0 | 182625.69 | 830.15 | 336.02 |
58.0 | 266202.53 | 962.92 | 342.00 |
Table 4 Static stiffness coefficients of PWGs with different diameters (H=25mm)
D/mm | α/(N·m-1) | β/(N·m-1) | γ |
---|---|---|---|
32.5 | 84252.85 | 509.78 | 317.51 |
39.0 | 122304.79 | 624.97 | 327.94 |
48.0 | 182625.69 | 830.15 | 336.02 |
58.0 | 266202.53 | 962.92 | 342.00 |
H/mm | α/(N·m-1) | β/(N·m-1) | γ |
---|---|---|---|
12 | 841657.06 | 1873.84 | 863.06 |
25 | 266202.53 | 962.92 | 342.00 |
37 | 180856.78 | 955.47 | 218.39 |
50 | 125933.70 | 757.91 | 155.27 |
Table 5 Static stiffness coefficients of PWGs with different thicknesses (D=58mm)
H/mm | α/(N·m-1) | β/(N·m-1) | γ |
---|---|---|---|
12 | 841657.06 | 1873.84 | 863.06 |
25 | 266202.53 | 962.92 | 342.00 |
37 | 180856.78 | 955.47 | 218.39 |
50 | 125933.70 | 757.91 | 155.27 |
v0/(m·s-1) | pmax/MPa | T/ms | Imax/(kPa·s) |
---|---|---|---|
7.51 | 3.39 | 5.795 | 8.659 |
9.66 | 6.14 | 4.154 | 10.697 |
14.56 | 13.19 | 2.560 | 14.995 |
18.82 | 29.40 | 1.705 | 18.560 |
21.40 | 43.15 | 1.215 | 21.093 |
Table 6 Test results at different impact velocities (D=48mm,H=25mm)
v0/(m·s-1) | pmax/MPa | T/ms | Imax/(kPa·s) |
---|---|---|---|
7.51 | 3.39 | 5.795 | 8.659 |
9.66 | 6.14 | 4.154 | 10.697 |
14.56 | 13.19 | 2.560 | 14.995 |
18.82 | 29.40 | 1.705 | 18.560 |
21.40 | 43.15 | 1.215 | 21.093 |
D/mm | pmax/MPa | T/ms | Imax/(kPa·s) | l/H |
---|---|---|---|---|
32.5 | 20.24 | 1.95 | 14.41 | 0.842 |
39.0 | 15.97 | 2.01 | 14.46 | 0.818 |
48.0 | 13.19 | 2.56 | 14.99 | 0.782 |
Table 7 Test results for different PWG diameters (H=25mm)
D/mm | pmax/MPa | T/ms | Imax/(kPa·s) | l/H |
---|---|---|---|---|
32.5 | 20.24 | 1.95 | 14.41 | 0.842 |
39.0 | 15.97 | 2.01 | 14.46 | 0.818 |
48.0 | 13.19 | 2.56 | 14.99 | 0.782 |
H/mm | pmax/MPa | T/ms | Imax/(kPa·s) | l/H |
---|---|---|---|---|
12 | 25.55 | 1.23 | 13.49 | 0.801 |
25 | 13.19 | 2.56 | 14.99 | 0.782 |
37 | 9.45 | 3.37 | 15.31 | 0.738 |
50 | 6.98 | 6.36 | 16.38 | 0.717 |
58 | 6.35 | 7.23 | 17.91 | 0.703 |
Table 8 Test results for different PWG thicknesses (D=48mm)
H/mm | pmax/MPa | T/ms | Imax/(kPa·s) | l/H |
---|---|---|---|---|
12 | 25.55 | 1.23 | 13.49 | 0.801 |
25 | 13.19 | 2.56 | 14.99 | 0.782 |
37 | 9.45 | 3.37 | 15.31 | 0.738 |
50 | 6.98 | 6.36 | 16.38 | 0.717 |
58 | 6.35 | 7.23 | 17.91 | 0.703 |
特征参数 | 几何因子 | ||||
---|---|---|---|---|---|
D | H | DH | D2H | DH2 | |
pmax | -0.425 | -0.890 | -0.910 | -0.907 | -0.812 |
T | 0.381 | 0.977 | 0.983 | 0.972 | 0.987 |
Imax | 0.348 | 0.981 | 0.981 | 0.966 | 0.977 |
Table 9 Correlation coefficientsamong typical geometric factors and load characteristic parameters
特征参数 | 几何因子 | ||||
---|---|---|---|---|---|
D | H | DH | D2H | DH2 | |
pmax | -0.425 | -0.890 | -0.910 | -0.907 | -0.812 |
T | 0.381 | 0.977 | 0.983 | 0.972 | 0.987 |
Imax | 0.348 | 0.981 | 0.981 | 0.966 | 0.977 |
[1] |
闫俊伯, 刘彦, 李亚飞, 等. 不同强度混凝土及钢筋对钢筋混凝土柱抗爆性能的影响[J]. 兵工学报, 2021, 42(3):530-544.
doi: 10.3969/j.issn.1000-1093.2021.03.009 |
doi: 10.3969/j.issn.1000-1093.2021.03.009 |
|
[2] |
霍庆, 王逸平, 刘光昆, 等. 地下拱形结构侧顶爆炸的破坏模式及影响因素[J]. 兵工学报, 2021, 42(增刊1):105-116.
|
|
|
[3] |
|
[4] |
胡朝磊, 孙海亮, 王志鹏, 等. 高速颗粒流冲击下负泊松比力学超材料夹芯梁的动态响应及缓冲吸能机理[J/OL]. 爆炸与冲击.
|
|
|
[5] |
|
[6] |
|
[7] |
|
[8] |
孙桂娟, 高伟亮, 刘瑞朝, 等. 爆炸近区荷载模拟试验技术研究进展[J]. 防护工程, 2019, 4(6):66-73.
|
|
|
[9] |
|
[10] |
|
[11] |
|
[12] |
|
[13] |
|
[14] |
|
[15] |
|
[16] |
|
[17] |
|
[18] |
张瑞杰, 张一帆, 张凡, 等. 大变形压缩条件下聚氨酯弹性体的力学性能研究[J]. 水利与建筑工程学报, 2022, 20(2):118-123.
|
|
|
[19] |
|
[20] |
|
[21] |
黄德东, 温晶晶, 邢亮亮, 等. 半正弦波形发生器的非线性动力学模型及模型参数标定方法研究[J]. 西北工业大学学报, 2019, 37(6):1085-1094.
|
|
|
[22] |
毛勇建. 跌落冲击机垫层的硬非线性对半正弦波模拟的影响[J]. 环境技术, 2002(5):5-9.
|
|
|
[23] |
|
[24] |
李圣童, 汪维, 梁仕发, 等. 长持时爆炸冲击波荷载作用下梁板组合结构的动力响应[J]. 爆炸与冲击, 2022, 42(7):075103.
|
|
|
[25] |
赵武超, 钱江, 李江远. 柔性冲击下钢筋混凝土柱的动态响应[J]. 兵工学报, 2021, 42(增刊1):117-126.
|
|
[1] | YAO Menglei, HOU Hailiang, LI Dian, XIE Yue. Dynamic Response of Y-shaped Sandwich Plate and the Influence Factors of Anti Explosion Performance Under the Explosion Load in the Warship Cabin [J]. Acta Armamentarii, 2024, 45(3): 837-854. |
[2] | CHEN Hui, LIU Jianhu, CHEN Xuebing, HUANG Yaping, CAI Rongkun. Research on Experimental Method for Impact Strength of Large Load FRP Supporting Element of a Shipboard Equipment [J]. Acta Armamentarii, 2024, 45(3): 957-962. |
[3] | GAO Maoguo, LIU Rui, GUO Yansong, GENG Hengheng, CHEN Pengwan. Dynamic Deformation, Damage and Failure Behavior of High Entropy HfZrTiTaAl Alloy [J]. Acta Armamentarii, 0, (): 0-0. |
[4] | CAI Zhicheng, XU Zejian, GUO Baoqiao, LIU Yan, HUANG Fenglei. Dynamic Bending Fracture Behavior of Zirconia Ceramic [J]. Acta Armamentarii, 0, (): 0-0. |
[5] | NING Jianguo, LI Yuhui, YANG Shuai, XU Xiangzhao. Research on Constitutive Model of Low-Temperature Concrete with Damage under Impact Load [J]. Acta Armamentarii, 0, (): 0-0. |
[6] | TANG Kui, WANG Jinxiang, LIU Liangtao, YANG Ming. Study on the Mechanism of Secondary Penetration of Long-rod Projectile and Its Influencing Factors [J]. Acta Armamentarii, 2023, 44(12): 3707-3718. |
[7] | REN Guang, WU Haijun, DONG Heng, LÜ Yingqing, HUANG Fenglei. Deformable Special-Shaped Projectile Impacting a High-strength Rock:Experiments and Analysis [J]. Acta Armamentarii, 2023, 44(12): 3793-3804. |
[8] | WANG Jirui, WANG Chengxin, WANG Yini, TANG Kui, BO Qile. Equivalent Strength of Armour Steel against High-velocity Penetration of Long-rod Projectile [J]. Acta Armamentarii, 2023, 44(12): 3755-3770. |
[9] | ZHANG Zhonghao, WANG Wei, ZHANG Guokai, WANG Zhen, WU Gu. Study on Deterioration and Damage Performance of Concrete at Different High Temperatures [J]. Acta Armamentarii, 2023, 44(S1): 152-159. |
[10] | QIN Bin, ZANG Liwei, GAO Tong, AN Shuo, LUO Xiangna. Similaraties of Applying Conducted Electrical Weapon to Living Target and to Salt Containing Gelatin Simulation Target [J]. Acta Armamentarii, 2022, 43(9): 2129-2135. |
[11] | KANG Wei, XU Peng, BU Weiping, YUE Yanxian, WANG Lizhen, FAN Yubo. Mechanical Testing of Biological Soft Tissue and Related Theoretical Research [J]. Acta Armamentarii, 2022, 43(9): 2164-2171. |
[12] | ZHANG Dujiang, ZHAO Zhenyu, HE Liang, REN Jianwei, QIANG Lusheng, ZHOU Yilai. Calibration and Verification of Dynamic Mechanical Properties of High-strength Armored Steel Based on Johnson-Cook ConstitutiveModel [J]. Acta Armamentarii, 2022, 43(8): 1966-1976. |
[13] | DANG Quanyong, GE Yanxin, GAO Yubo. Dynamic Mechanical Properties of Al2O3/SiC Composite Ceramic Subjected to Impact Loading [J]. Acta Armamentarii, 2022, 43(1): 175-180. |
[14] | WU Qian, GUO Weiguo. Calibration of Sensitivity Coefficient of Three-dimensional High-g Accelerometer Based on Vector Decomposition [J]. Acta Armamentarii, 2021, 42(7): 1535-1543. |
[15] | LI Juncheng, CHEN Gang, HUANG Fenglei, LU Yonggang, TAN Xiaojun, HUANG Weiyin. Impact Deformation Features and Load Characteristics of Truncated Ogival Nose Projectile under Taylor Impact [J]. Acta Armamentarii, 2021, 42(6): 1157-1168. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||