欢迎访问《兵工学报》官方网站,今天是

兵工学报 ›› 2024, Vol. 45 ›› Issue (S1): 51-59.doi: 10.12382/bgxb.2024.0659

• • 上一篇    下一篇

基于自注意力机制增强的CNN-LSTM的榴弹轨迹多步超前预测

孙溪晨1, 李伟兵2, 黄昌伟1, 付佳维2, 冯君1,*()   

  1. 1 南京理工大学 瞬态物理全国重点实验室, 江苏 南京 210094
    2 南京理工大学 机械工程学院, 江苏 南京 210094
  • 收稿日期:2024-08-01 上线日期:2024-11-06
  • 通讯作者:
  • 基金资助:
    智剑实验室(火箭军工程大学)开放基金项目(024-ZJSYS-KF02-10); 航空航天结构力学及控制全国重点实验室开放基金项目(MCMS-E-0423Y01)

Multi-step-ahead Prediction of Grenade Trajectory Based on CNN-LSTM Enhanced by Deep Learning and Self-attention Mechanism

SUN Xichen1, LI Weibing2, HUANG Changwei1, FU Jiawei2, FENG Jun1,*()   

  1. 1 National Key Laboratory of Transient Physics, Nanjing University of Science and Technology, Nanjing 210094, Jiangsu, China
    2 School of Mechanical Engineering, Nanjing University of Science and Technology, Nanjing 210094, Jiangsu, China
  • Received:2024-08-01 Online:2024-11-06

摘要:

由于榴弹飞行轨迹呈现复杂性、时变性和突变性等特点,给近程防空拦截系统带来了极大的挑战。针对目前轨迹数据时空特征捕捉困难且只能进行较少步数预测的问题,提出一种引入自注意力机制的基于卷积神经网络和长短期记忆神经网络(1dimension Convolutional neural network-Long short-term memory-Attention, 1D CNN-LSTM-ATT)的一维轨迹多步超前预测模型。将所提模型与CNN-LSTM、LSTM模型分别进行单步和多步预测对比分析;实现对于目标轨迹的从T时刻到未来任意T+K时刻的高精度实时多步超前预测。实验结果表明:无论是单步还是多步预测,1D CNN-LSTM-ATT模型预测的评价指标明显优于其他2个模型;1D CNN-LSTM-ATT模型预测500步(即10s)的累计预测误差在射程方向为82.83m,高度方向为11.68m,横偏方向为0.07m,为实施弹体拦截及时响应提供了重要保障。

关键词: 轨迹多步超前预测, 深度学习, 自注意力机制, CNN-LSTM模型

Abstract:

Since the grenade flight trajectory presents the characteristics of complexity, temporal variability and sudden change, it brings great challenges to the close-range air-defense interception system. Aiming at the current problem that the spatio-temporal features of trajectory data are hardly captured and only a small number of steps can be predicted, a trajectory multi-step-ahead prediction model based on 1-dimension convolutional neural network-long short-term memory-attention (1D CNN-LSTM-ATT) with the introduction of self-attention mechanism is proposed. The proposed model is compared and analyzed with CNN-LSTM and LSTM models in single-step and multi-step predictions, respectively, and realizes a high-precision real-time multi-step-ahead prediction of target trajectory from T moment to any T+K future moments. The study shows that the evaluation indexes of the 1D CNN-LSTM-ATT model are significantly better than those of the other two models for both single-step and multi-step prediction; the cumulative prediction error of 500 steps (i.e., 10s) of the 1D CNN-LSTM-ATT model is 82.83m in the direction of range, 11.68m in the direction of altitude, and 0.07m in the direction of transverse deviation, which provides an important guarantee of timely response to the implementation of the projectile interception. This provides an important guarantee for the timely response to the implementation of projectile interception.

Key words: trajectory multi-step-ahead prediction, deep learning, self-attention mechanism, CNN-LSTM model

中图分类号: