[1] |
JIA L Q, SHU F, HUANG N, et al. Capacity and optimum signal constellations for VLC systems[J]. Lightwave Technology, 2020, 38(8): 2180-2189.
doi: 10.1109/JLT.50
URL
|
[2] |
JIA L Q, SHU F, HUANG N, et al. Joint constellation-labeling optimization for VLC-CSK systems[J]. IEEE Wireless Communications Letters, 2019, 8(4): 1280-1284.
doi: 10.1109/LWC.2019.2916336
|
[3] |
MITRA R, BHATIA V, JAIN S et al. Performance analysis of random fourier features-based unsupervised multistage-clustering for VLC[J]. IEEE Communications Letters, 2021, 25(8): 2659-2663.
doi: 10.1109/LCOMM.2021.3089933
URL
|
[4] |
LI X Y, CHEN H J, LI S B, et al. Volterra-based nonlinear equalization for nonlinearity mitigation in organic VLC[C]//Proceedings of the 2017 13th International Wireless Communications and Mobile Computing Conference. Valencia, Spain:IEEE, 2017: 616-621.
|
[5] |
MIAO P, CHEN G J, WANG X B, et al. Adaptive nonlinear equalization combining sparse bayesian learning and kalman filtering for visible light communications[J]. Journal of Lightwave Technolog, 2020, 38(24): 6732-6745.
|
[6] |
KEKATOS V, GIANAKIS G B. Sparse volterra and polynomial regression models: recoverability and estimation[J]. IEEE Transactions on Signal Processing, 2011, 59(12): 5907-5920.
doi: 10.1109/TSP.2011.2165952
URL
|
[7] |
MIAO P, CHEN G J, CUMANAN K, et al. Deep hybrid neural network-based channel equalization in visible light communication[J]. IEEE Communications Letters, 2022, 26(7): 1593-1597.
doi: 10.1109/LCOMM.2022.3172219
URL
|
[8] |
LU X Y, LU C, YU W X, et al. Memory-controlled deep LSTM neural network post-equalizer used in high-speed PAM VLC system[J]. Optics Express, 2019, 27(5):7822-7833.
doi: 10.1364/OE.27.007822
pmid: 30876338
|
[9] |
ZHOU Y J, WEI Y R, HU F C, et al. Comparison of nonlinear equalizers for high-speed visible light communication utilizing silicon substrate phosphorescent white LED[J]. Optics Express, 2020, 28(2):2302-2316.
doi: 10.1364/OE.383775
pmid: 32121923
|
[10] |
MIAO P, ZHU B C, QI C H, et al. A model-driven deep learning method for LED nonlinearity mitigation in OFDM-based optical communications[J]. IEEE Access, 2019, 7: 71436-71446.
doi: 10.1109/Access.6287639
URL
|
[11] |
BORGERDING M, SCHNIRTER P. Onsager-corrected deep learning for sparse linear inverse problems[C] //Proceedings of 2016 IEEE Global Conference on Signal and Information Processing. Washington, DC, US: IEEE, 2016: 227-231.
|
[12] |
BORGERDING M, SCHNITER P, RANGAN S. AMP-inspired deep networks for sparse linear inverse problems[J]. IEEE Transactions on Signal Processing, 2017, 65(16): 4293-4308.
doi: 10.1109/TSP.2017.2708040
URL
|
[13] |
刘希, 苗圃, 田大明. 基于压缩感知的VLC非线性均衡器研究[J]. 青岛大学学报(工程技术版), 2022, 37(2):7-13 LIU X, MIAO P, TIAN D M.
|
|
Research on VLC nonlinear equalizer based on compressed sensing[J]. Journal of Qingdao University, 2022, 37(2): 7-13. (in Chinese)
|
[14] |
唐芳, 徐智勇, 汪井源, 等. 弱湍流下逆向调制光通信直流偏置光正交频分复用系统性能分析[J]. 兵工学报, 2020, 41(7): 1368-1374.
doi: 10.3969/j.issn.1000-1093.2020.07.014
|
|
TANG F, XU Z Y, WANG J Y, et al. Performance analysis of DCO-OFDM in modulated retro-reflector optical communication over weak turbulence[J]. Acta Armamentarii, 2020, 41(7): 1368-1374. (in Chinese)
doi: 10.3969/j.issn.1000-1093.2020.07.014
|
[15] |
LIU X, MIAO P. Performance investigation of volterra-based digital predistortion using orthogonal matching pursuit[C] //Proceedings of 2020 International Conference on Communications, Information System and Computer Engineering. Kuala Lumpur, Malaysia: IEEE, 2020: 63-67.
|
[16] |
MA J J, LIU L, YUAN X J, et al. On orthogonal AMP in coded linear vector systems[J]. IEEE Transactions on Wireless Communications, 2019, 18(12): 5658-5672.
doi: 10.1109/TWC.7693
URL
|
[17] |
BORGERDING M, SCHNITER P. Onsager-corrected deep learning for sparse linear inverse problems[C]//Proceedings of 2016 IEEE Global Conference on Signal and Information Processing. Washington, DC, US: IEEE, 2016: 227-231.
|
[18] |
MIAO P, YIN W, PENG H, et al. Deep learning based nonlinear equalization for DCO-OFDM systems[C]//Proceedings of 2021 IEEE International Conference on Electrical Engineering and Mechatronics Technology. Qingdao, China: IEEE, 2021: 699-703.
|
[19] |
WEI X H, HU C, DAI L L. Deep learning for beamspace channel estimation in millimeter-wave massive MIMO systems[J]. IEEE Transactions on Communications, 2021, 69(1): 182-193.
doi: 10.1109/TCOMM.26
URL
|
[20] |
BORGERDING M, SCHNITER P, RANGAN S. AMP-inspired deep networks for sparse linear inverse problems[J]. IEEE Transactions on Signal Processing, 2017, 65(16): 4293-4308.
doi: 10.1109/TSP.2017.2708040
URL
|