欢迎访问《兵工学报》官方网站,今天是 分享到:

兵工学报 ›› 2024, Vol. 45 ›› Issue (2): 466-473.doi: 10.12382/bgxb.2022.0679

• • 上一篇    下一篇

融合模型求解与深度学习的可见光通信非线性均衡器

田大明, 苗圃*()   

  1. 青岛大学 电子信息学院, 山东 青岛 266071
  • 收稿日期:2022-07-27 上线日期:2024-02-29
  • 通讯作者:
    *邮箱: cn
  • 基金资助:
    国家自然科学基金项目(61801257); 山东省自然科学基金项目(ZR2019BF001)

Visible Light Communication Nonlinear Equalizer Based on Model Solving and Deep Learning

TIAN Daming, MIAO Pu*()   

  1. School of Electronical Information Engineering, Qingdao University, Qingdao 266071, Shandong, China
  • Received:2022-07-27 Online:2024-02-29

摘要:

沃尔特拉非线性后均衡器(Volterra Series Nonlinear Post-Equalizer,VS-NPE)可以补偿可见光通信(Visible Light Communication, VLC)的非线性失真和多径效应,但其结构复杂且均衡精度有限。在VS-NPE内核求解基础上,提出一种基于阈值自学习近似消息传递(Learned Threshold Approximate Message Passing,LTAMP)网络的非线性均衡器。修正样本观测矩阵以克服其列高度相关的缺陷;在改进近似消息传递(Approximate Message Passing, AMP)算法迭代的基础上,将算法每一次迭代的计算过程映射为一层特殊的神经网络,经逐层展开后构建出完整的LTAMP均衡器。所提方法融合了模型求解和深度学习的优势,可从样本中学习最佳的AMP参数,以克服其对噪声敏感且输出不稳定的缺陷,进而提升内核求解稳定性与计算精度。仿真结果表明,与稳固阈值AMP算法相比,所提方法在误码率为1×10-3时能取得2dB的信噪比增益,且对样本噪声具有较强的自适应性,展现出优异的非线性失真补偿能力。

关键词: 沃尔特拉非线性后均衡器, 可见光通信, 近似消息传递算法, 深度学习

Abstract:

The Volterra series nonlinear post-equalizer (VS-NPE) can compensate for the nonlinear distortion and multipath effects of visible light communication (VLC), but its structure is complex and the equalization accuracy is limited. A nonlinear equalizer for learning threshold approximate message passing (LTAMP) networks is proposed based on the VS-NPE kernel calculation. The sample observation matrix is modified to overcome the defect that its columns are highly correlated. Then the calculation process of each iteration of the improved approximate message passing(AMP) algorithm is mapped to a special neural network, which is expanded layer by layer to construct a complete LTAMP equalizer. The proposed method combines the advantages of model solving and deep learning, and can learn the best AMP parameters from samples to overcome the defects of its sensitivity to noise and unstable output, thereby improving the stability of kernel solving and the calculation accuracy. Simulations show that, compared with the stability threshold AMP algorithm, the proposed method can achieve a signal-to-noise ratio gain of 2dB when the bit error rate (BER) is 1×10-3, and has a strong sampling adaptive ability, showing an excellent nonlinear distortion compensation ability.

Key words: Volterra nonlinear post-equalizer, visible light communication, approximate message passing algorithm, deep learning

中图分类号: