[1] 穆凌霞, 王新民, 谢蓉, 等. 高超音速飞行器及其制导控制技术综述[J]. 哈尔滨工业大学学报, 2019, 51(3):1-14. MU L X, WANG X M, XIE R, et al. A survey of the hypersonic flight vehicle and its guidance and control technology[J]. Journal of Harbin Institute of Technology, 2019, 51(3):1-14. (in Chinese) [2] 李炳乾, 董文瀚, 马小山. 无人机编队保持反步容错控制[J]. 兵工学报, 2018, 39(11):2173-2184. LI B Q, DONG W H, MA X S. Back-stepping-fault-tolerant control for keeping the formation of unmanned aerial vehicles[J]. Acta Armamentarii, 2018, 39(11):2173-2184.(in Chinese) [3] 鲁娜, 房濛濛. 高超声速飞行器控制技术研究进展综述[J]. 飞航导弹, 2019(12):16-21,62. LU N, FANG M M. The research progress of hypersonic vehicle control technology is reviewed[J]. Aerodynamic Missile Journal, 2019(12):16-21,62.(in Chinese) [4] 王陈亮, 李梓明, 杨晨.一种考虑执行器输入约束的高超声速飞行器自适应容错控制方法:CN108919651A[P]. 2018-11-30. WANG C L, LI Z M, YANG C. An adaptive fault-tolerant control method for hypersonic vehicle considering actuator input constraints:CN108919651A[P].2018-11-30.(in Chinese) [5] GUO L, CAO S Y. Anti-disturbance control for systems with multiple disturbances[M]∥LEWIS F L, SAM S.Automation and Control Engineering: A Series of Reference Books and Textbooks. Boca Raton, FL, US: CRC Press, 2017. [6] 路遥, 孙友, 路坤锋, 等. 近空间高超声速飞行器输入饱和抑制模糊自适应控制[J]. 宇航学报, 2018, 39(9): 986-994. LU Y, SUN Y, LU K F,et al. Fuzzy adaptive control for near-space hypersonic vehicles with saturation restraint of inputs[J]. Journal of Astronautics, 2018, 39(9): 986-994. (in Chinese) [7] NIU J, CHEN F Y, TAO G. Nonlinear fuzzy fault-tolerant control of hypersonic flight vehicle with parametric uncer-tainty and actuator fault[J]. Nonlinear Dynamics, 2018, 92(7): 1299-1315. [8] 常晶, 周军. 一种基于时变干扰观测器的高超声速飞行器容错控制策略设计[J]. 控制与决策, 2018, 33(10): 1893-1900. CHANG J,ZHOU J.A FTC scheme for hypersonic vehicle based on adaptive disturbance observer[J].Control and Decision, 2018, 33(10):1893-1900. (in Chinese) [9] 贾沛然, 陈克俊, 何力. 远程火箭弹道学[M].长沙:国防科技大学出版社, 2009. JIA P R, CHEN K J, HE L. Long-range rocket ballistics[M]. Changsha: National University of Defense Technology Press, 2009. (in Chinese) [10] 周凤岐, 王延, 周军. 高超声速飞行器耦合系统变结构控制设计[J]. 宇航学报, 2011, 32(1): 66-71. ZHOU F Q, WANG Y, ZHOU J. Variable structure control design of coupling system for hypersonic vehicles[J]. Journal of Astronautics, 2011, 32(1): 66-71. (in Chinese) [11] CHEN W H, YANG J, GUO L, et al. Disturbance-observer-based control and related methods - an overview[J]. IEEE Tran- sactions on Industrial Electronics, 2016, 63(2): 1083-1095. [12] 韩京清. 自抗扰控制技术[M].北京:国防工业出版社, 2008. HAN J Q. Active disturbance rejection control technology[M]. Beijing:National Defense Industry Press, 2008. (in Chinese) [13] GAO G, WANG J Z. Observer-based fault-tolerant control for an air-breathing hypersonic vehicle model[J]. Nonlinear Dynamics, 2014, 76(1): 409-430. [14] ALWI H, EDWARDS C, TAN C P. Fault detection and fault-tolerant control using sliding modes[M]. London,UK: Springer, 2011. [15] 宋超, 赵国荣, 刘旭. 高超声速飞行器的自适应容错控制[J]. 固体火箭技术, 2012, 35(5): 593-596. SONG C, ZHAO G R, LIU X.Adaptive fault-tolerant control for hypersonic vehicle[J]. Journal of Solid Rocket Technology, 2012, 35(5): 593-596. (in Chinese) [16] 李新国, 方群. 有翼导弹飞行动力学[M].西安:西北工业大学出版社, 2005. LI X G, FANG Q. Flight dynamics of winged missile [M].Xi'an:Northwestern Polytechnical University Press, 2005. (in Chinese) [17] 刘金琨. 滑模变结构控制MATLAB仿真[M].北京:清华大学出版社, 2015. LIU J K. MATLAB simulation of sliding mode variable structure control[M]. Beijing:Tsinghua University Press, 2015. (in Chinese) [18] 康惠骏. 非线性系统理论[M].北京:机械工业出版社, 2010. KANG H J. Nonlinear system theory[M]. Beijing: China Machine Press, 2010. (in Chinese) [19] IOANNOU P A, KOKOTOVIC P V. Adaptive systems with reduced models[M]. Berlin, Germany : Springer,1983. [20] IOANNOU P, FIDAN B. Adaptive control tutorial (advances in design and control)[M]. Philadelphia, PA, US: Society for Industrial and Applied Mathematics, 2006.
|