| [1]  丛爽, 邓科, 尚伟伟,等. 陀螺稳定平台建模分析[J]. 科技导报, 2011, 29(9): 42-47.
 CONG S, DENG K, SHANG W W, et al. Modeling analysis on the gyro stabilized[J]. Science & Technology Review, 2011, 29(9):  42-47. (in Chinese)
 [2]  吕宏宇, 金刚石, 高旭辉. 两轴四框架机载光电平台稳定原理分析[J]. 激光与红外, 2015, 45(2):194-198.
 L H Y, JIN G S, GAO X H. Stabilization analysis of airborne electro-optical platform with two-axis and four-gimbal[J]. Laser & Infrared, 2015, 45(2): 194-198. (in Chinese)
 [3]  孙名佳. 滑模变结构与自适应控制在伺服控制系统中的应用[D]. 哈尔滨: 哈尔滨工业大学, 2009.
 SUN M J. The application of SMC and MRAC in servo control system[D]. Harbin: Harbin Institute of Technology, 2009. (in Chinese)
 [4]  辛林杰, 魏志强, 李斌. 前馈控制在光电跟踪系统中的应用研究[J]. 电视技术, 2020, 44(4): 27-31.
 XIN L J, WEI Z Q, LI B. Research and application of feedforward control in photoelectric tracking system[J]. Video Engineering, 2020, 44(4): 27-31. (in Chinese)
 [5]  黄辽宁. 改进PID算法在光电跟踪仪中的应用研究[J]. 自动化技术与应用, 2019, 38(8): 1-4.
 HUANG L N. Application of improved PID algorithm in photoelectric tracker[J]. Techniques of Automation & Applications, 2019, 38(8): 1-4. (in Chinese)
 [6]  丁策, 戴明, 李嘉全, 等. 机载光电陀螺稳定平台的伪微分反馈控制[J]. 光电工程, 2012, 39(10): 128-134.
 DING C, DAI M, LI J Q, et al. The PDF control of airborne photoelectric gyro stabilized platform[J]. Opto-Electronic Engineering, 2012, 39(10): 128-134. (in Chinese)
 [7]  侯宏录, 周德云, 王伟, 等. 模糊PID控制在光电跟踪控制系统中的应用[J]. 光电工程, 2006, 33(5): 12-16.
 HOU H L, ZHOU D Y, WANG W, et al. Application of fuzzy-PID control in system of photo-electric tracking[J]. Opto-Electronic Engineering, 2006, 33(5): 12-16. (in Chinese)
 [8]  秦树旺, 毛耀, 包启亮. 光电跟踪系统的模糊Ⅱ型控制技术研究[J]. 激光技术, 2021, 45(2): 147-154.
 QIN S W, MAO Y, BAO Q L. Research on fuzzy Ⅱ-order control method of photoelectric servo tracking systems[J]. Laser Technology, 2021, 45(2): 147-154. (in Chinese)
 [9]  李家豪, 孙洪飞. 自抗扰控制技术的改进和应用[J]. 厦门大学学报(自然科学版), 2018, 57(5): 695-701.
 LI J H, SUN H F. Improvement and application of active disturbance rejection control[J]. Journal of Xiamen University (Natural Science), 2018, 57(5): 695-701. (in Chinese)
 [10]  UTKIN  V. Varible structure systems with sliding modes[J]. IEEE Transactions on Automatic Control, 1977, 22(2): 212-222.
 [11]  高为炳. 变结构控制理论基础[M]. 北京: 科学出版社, 1990.
 GAO W B. Theory foundation of variable structure control[M]. Beijing: Science Press, 1990. (in Chinese)
 [12]  穆效江, 陈阳舟. 滑模变结构控制理论研究综述[J]. 控制工程, 2007, 14(增刊2): 1-5.
 MU X J, CHEN Y Z. Overview of sliding mode variable structure control[J]. Control Engineering of China, 2007, 14(S2): 1-5. (in Chinese)
 [13]  任亚婧, 段友莲, 胡兵. 光电稳定平台的变结构控制策略研究[J]. 舰船科学技术, 2020, 42(8): 217-219.
 REN Y J, DUAN Y L, HU B. Research on variable structure control strategy for photoelectric stability platform[J]. Ship Science and Technology, 2020, 42(8): 217-219. (in Chinese)
 [14]  洪华杰, 贠平平, 王学宁, 等. 光电稳定滑模变结构控制系统的设计与仿真[J]. 计算机仿真, 2010, 27(7): 130-133, 221.
 HONG H J, YUN P P, WANG X N, et al. Design and simulation of variable structure control system based on sliding mode for photoelectric stabilized platform[J]. Computer Simulation, 2010, 27(7): 130-133,221. (in Chinese)
 [15]  王红红, 陈方斌, 江涛, 等. 不确定非线性光电伺服系统滑模自适应控制[J]. 应用光学, 2009, 30(2): 242-245.
 WANG H H, CHEN F B, JIANG T, et al. Adaptive SMC for nonlinear optoelectronic servo system with uncertainty[J]. Journal of Applied Optics, 2009, 30(2): 242-245. (in Chinese)
 [16]  夏先齐, 张葆, 李贤涛, 等. 基于扩张状态观测器的永磁同步电机低速滑模控制[J]. 光学精密工程, 2019, 27(12): 2628-2638.
 XIA X Q, ZHANG B, LI X T, et al. Low speed sliding mode control of permanent magnet synchronous motor based on extended state observer[J]. Optics and Precision Engineering, 2019, 27(12): 2628-2638. (in Chinese)
 [17]  刘京, 邓永停, 李洪文. 基于级联滑模控制的高精度光电跟踪与捕获[J]. 光学精密工程, 2020, 28(2): 350-362.
 LIU J, DENG Y T, LI H W. High-precision photoelectronic acquisition and tracking based on cascade sliding mode control[J]. Optics and Precision Engineering, 2020, 28(2): 350-362. (in Chinese)
 [18]  高为炳. 变结构控制的理论及设计方法[M]. 北京: 科学出版社, 1996.
 GAO W B. Theory and design method of variable structure control[M]. Beijing: Science Press, 1996. (in Chinese)
 [19]  苗双全, 丛炳龙, 刘向东. 基于输入成形的挠性航天器自适应滑模控制[J]. 航空学报, 2013, 34(8): 1906-1914.
 MIAO S Q, CONG B L, LIU X D. Adaptive sliding mode control of flexible spacecraft on input shaping[J]. Acta Aeronautica et Astronautica Sinica, 2013, 34(8): 1906-1914. (in Chinese)
 [20]  丛炳龙, 刘向东, 陈振. 刚体航天器姿态跟踪系统的自适应积分滑模控制[J]. 航空学报, 2013, 34(3): 620-628.
 CONG B L, LIU X D, CHEN Z. Adaptive integral sliding mode control for rigid spacecraft attitude tracking[J]. Acta Aeronautica et Astronautica Sinica, 2013, 34(3): 620-628. (in Chinese)
 [21]  WHEELER  G, SU C Y, STEPANENKO Y. A sliding mode controller with improved adaption laws for the upper bounds on the norm of uncertainties[J]. Automatica, 1998, 34(12): 1657- 1661.
 [22]  韩小康, 董浩, 王明, 等. 光电稳定平台中Stribeck摩擦力矩的补偿方法[J]. 火力与指挥控制, 2019, 44(10): 123-126.
 HAN X K, DONG H, WANG M, et al. The research on stribeck friction torque compensation method in photoelectric stabilized platform[J]. Fire Control & Command Control, 2019, 44(10): 123-126. (in Chinese)
 
 
 |