[1] |
黄琰, 李岩, 俞建成, 等. AUV智能化现状与发展趋势[J]. 机器人, 2020, 42(2):215-231.
doi: 10.13973/j.cnki.robot.190392
|
|
HUANG Y, LI Y, YU J C, et al. State-of-the-art and development trends of AUV intelligence[J]. Robot, 2020, 42(2):215-231. (in Chinese)
doi: 10.13973/j.cnki.robot.190392
|
[2] |
智达. 国外海军无人潜航器发展综述[J]. 船舶工程, 2022, 44(8):170-172.
|
|
ZHI D. Review of the development of foreign naval unmanned underwater vehicles[J]. Ship Engineering, 2022, 44(8):170-172. (in Chinese)
|
[3] |
王童豪, 彭星光, 胡浩, 等. 海上有人/无人协同系统及其关键技术综述[J]. 兵工学报, 2024, 45(10):3317-3340.
doi: 10.12382/bgxb.2024.0327
|
|
WANG T H, PENG X G, HU H, et al. Maritime manned/unmanned collaborative systems and key technologies:a survey[J]. Acta Armamentarii, 2024, 45(10):3317-3340. (in Chinese)
|
[4] |
张鑫明, 韩明磊, 余益锐, 等. 潜艇与UUV协同作战发展现状及关键技术[J]. 水下无人系统学报, 2021, 29(5):497-508.
|
|
ZHANG X M, HAN M L, YU Y R, et al. Development and key technologies of submarine-UUV cooperative operation[J]. Journal of Unmanned Undersea Systems, 2021, 29(5):497-508. (in Chinese)
|
[5] |
崔云菲. 多无人水下航行器自抗扰编队包含控制方法研究[D]. 哈尔滨: 哈尔滨工程大学, 2024:3-4.
|
|
CUI Y F. Research on Anti-disturbance formation containment control for multiple unmanned underwater vehicles[D]. Harbin: Harbin Engineering University, 2024:3-4. (in Chinese)
|
[6] |
ER M J, GONG H B, LIU Y, et al. Intelligent trajectory tracking and formation control of underactuated autonomous underwater vehicles:a critical review[J]. IEEE Transactions on Systems Man Cybernetics-Systems, 2024, 54(1):543-555.
|
[7] |
DU H B, WEN G H, WU D, et al. Distributed fixed-time consensus for nonlinear heterogeneous multi-agent systems[J]. Automatica, 2020, 113:108797.
|
[8] |
NGO A T, PHAM N N T, HO P H A. Adaptive finite-time leader-follower formation control for multiple AUVs regarding uncertain dynamics and disturbances[J]. Ocean Engineering, 2023, 269:113503.
|
[9] |
LI J, TIAN Z Y, ZHANG H H, et al. Robust finite-time control of a multi-AUV formation based on prescribed performance[J]. Journal of Marine Science and Engineering, 2023, 11(5):897.
|
[10] |
LI L N, LIU Z X, GUO S F, et al. Adaptive practical predefined-time control for uncertain teleoperation systems with input saturation and output error constraints[J]. IEEE Transactions on Industrial Electronics, 2024, 71(2):1842-1852.
|
[11] |
POLYAKOV A. Nonlinear feedback design for fixed-time stabilization of linear control systems[J]. IEEE Transactions on Automatic Control, 2012, 57(8):2106-2110.
|
[12] |
LI X J, QIN H D, LI L Y. Fixed-time formation control for AUVs with unknown actuator faults based on lumped disturbance observer[J]. Ocean Engineering, 2023, 269:113495.
|
[13] |
王静耀, 杜佳璐. 欠驱动AUV分布式事件触发固定时间三维编队控制[J]. 控制与决策, 2025, 40(1):231-241.
|
|
WANG J Y, DU J L. Distributed event-triggered fixed-time 3-D formation control of underactuated AUVs[J]. Control and Decision, 2025, 40(1):231-241. (in Chinese)
|
[14] |
HOLLOWAY J, KRSTIC M. Prescribed-time output feedback for linear systems in controllable canonical form[J]. Automatica, 2019, 107:77-85.
|
[15] |
黄秀颖, 刘海涛, 田雪虹. 基于输入饱和的欠驱动水面舰艇预定义时间跟踪控制[J]. 中国舰船研究, 2024, 19(1):98-110.
|
|
HUANG X Y, LIU H T, TIAN X H. Predefined time tracking control of underactuated surface vessel with input saturation[J]. Chinese Journal of Ship Research, 2024, 19(1):98-110. (in Chinese)
|
[16] |
YANG T T, ZHANG P F, CHEN H Y. Distributed prescribed-time leader-follower formation control of surface vehicles with unknowns and input saturation[J]. ISA Transactions, 2023, 124:16-27.
|
[17] |
YAN Z P, GONG P, ZHANG W, et al. Model predictive control of autonomous underwater vehicles for trajectory tracking with external disturbances[J]. Ocean Engineering, 2020, 217:107884.
|
[18] |
XIA G Q, ZHANG Y, ZHANG W, et al. Dual closed-loop robust adaptive fast integral terminal sliding mode formation finite-time control for multi-underactuated AUV system in three dimensional space[J]. Ocean Engineering, 2021, 233:108903.
|
[19] |
CHEN H X, TANG G Y, WANG S F, et al. Adaptive fixed-time backstepping control for three-dimensional trajectory tracking of underactuated autonomous underwater vehicles[J]. Ocean Engineering, 2023, 275:114109.
|
[20] |
HUA C C, NING P J, LI K. Adaptive prescribed-time control for a class of uncertain nonlinear systems[J]. IEEE Transactions on Automatic Control, 2022, 67(11):6159-6166.
|
[21] |
YANG Y N, LIU X S, ZENG X D. Dynamic event-triggered prescribed-time zero-error tracking control for non-strict feedback nonlinear systems[J]. Nonlinear Dynamics, 2025, 113(1):567-581.
|
[22] |
WANG T Q, LIU Y T, ZHANG X F. Extended state observer-based fixed-time trajectory tracking control of autonomous surface vessels with uncertainties and output constraints[J]. ISA Transactions, 2022, 128:174-183.
|
[23] |
LI J H. 3D trajectory tracking of underactuated non-minimum phase underwater vehicles[J]. Automatica, 2023, 155:111149.
|
[24] |
SHOJAEI K. Neural network formation control of underactuated autonomous underwater vehicles with saturating actuators[J]. Neurocomputing, 2016, 194(19):372-384.
|
[25] |
KHAC D D, JIE P. Control of ships and underwater vehicles:design for underactuated and nonlinear marine systems[M]. Berlin,Germany: Springer, 2009.
|