欢迎访问《兵工学报》官方网站,今天是

兵工学报

• •    下一篇

行进间无人车载炮稳定系统自抗扰自适应复合控制

袁树森1,胡哲1,易文俊1*(),邓文翔2,姚建勇2,杨国来2,管军3,王一珉4   

  1. (1. 南京理工大学 瞬态物理全国重点实验室, 江苏 南京 210094;2. 南京理工大学 机械工程学院, 江苏 南京 210094;3. 江苏科技大学 自动化学院, 江苏 镇江 212100;4. 内蒙古第一机械集团股份有限公司南京智能装备科技中心 技术部, 江苏 南京 210014)
  • 收稿日期:2024-09-24 修回日期:2025-08-19
  • 基金资助:
    中国博士后科学基金面上项目(2024M754148); 国家资助博士后研究人员计划(GZB20240980); 中国国家自然科学基金(52275062); 中国国家自然科学基金(62203191); 江苏省自然科学基金(BK20230096); 江苏省高等学校基础科学(自然科学)研究面上项目(22KJB590001); 江苏省卓越博士后计划项目(2024ZB654); 中国博士后科学基金特别资助项目(2025T181132)

Active Disturbance Adaptive Composite Control for Moving Unmanned Vehicle-mounted Gun Stabilization System

YUAN Shusen1, HU Zhe1, YI Wenjun1*(), DENG Wenxiang2, YAO Jianyong2, YANG Guolai2, GUAN Jun3, WANG Yimin4   

  1. (1. National Key Laboratory of Transient Physics, Nanjing University of Science and Technology, Nanjing 210094, Jiangsu,China; 2. School of Mechanical Engineering, Nanjing University of Science and Technology, Nanjing 210094, Jiangsu, China; 3. College of Automation, Jiangsu University of Science and Technology, Zhenjiang, 212100, Jiangsu, China; 4. Technical Department, Inner Mongolia First Machinery Group Co., Ltd. Nanjing Intelligent Equipment Tech Center, Nanjing 210014, Jiangsu, China)
  • Received:2024-09-24 Revised:2025-08-19
  • Supported by:
    中国博士后科学基金面上项目(2024M754148);中国博士后科学基金特别资助项目(2025T181132);国家资助博士后研究人员计划项目(GZB20240980);江苏省卓越博士后计划项目(2024ZB654);国家自然科学基金项目(52275062、62203191)

摘要: 针对行进间无人车载炮稳定系统存在复杂非线性和随机扰动影响的问题,提出一种自抗扰自适应复合控制策略。建立计及执行器动态和模型不确定性的无人车载炮稳定系统机电耦合动力学方程;基于反步思想将自适应控制和扩张状态观测器巧妙融合,构造参数自适应律在线更新系统的未知参数,利用双通道扩张状态观测器实时估计系统的匹配和不匹配干扰并进行前馈补偿;由于车载炮稳定系统的参数不确定性主要由自适应技术解决,因此进一步降低了扩张状态观测器的学习负担,提高了行进间无人车载炮稳定系统的跟踪性能,避免了高增益反馈的影响;基于Lyapunov函数的稳定性分析表明,当系统只存在常值干扰时可以实现车载炮的渐近稳定,即使存在时变不确定性也能确保车载炮稳定系统获得规定的瞬态性能和跟踪精度;通过对比联合仿真和模拟试验证明了自抗扰自适应复合控制策略的有效性和可行性。

关键词: 无人车载炮, 稳定系统, 扩张状态观测器, 自适应控制, 扰动补偿

Abstract: Aiming at the complex nonlinearity and random disturbance in the stabilization system of moving unmanned vehicle-mounted guns, a composite control strategy combining active disturbance rejection adaptive control is proposed. The electromechanical coupling dynamic equations of the unmanned vehicle-mounted gun stabilization system are established considering the actuator dynamics and model uncertainties. Based on the backstepping approach, adaptive control is ingeniously integrated with the extended state observer (ESO), constructing parameter adaptation laws to update the unknown parameters of the system online. A dual-channel ESO is used to estimate the matched and unmatched disturbances in real time and provide feedforward compensation. Since the parameter uncertainties of the stabilization system are mainly addressed by adaptive technology, the learning burden of the ESO is further reduced, improving the tracking performance of the moving unmanned vehicle-mounted gun stabilization system and avoiding the impact of high-gain feedback. The stability analysis based on the Lyapunov function indicates that asymptotic control for stabilization system of the vehicle-mounted gun can be achieved when only constant disturbances are present, and even in the presence of time-varying uncertainties, prescribed transient performance and tracking accuracy can still be ensured. Comparative co-simulations and experimental tests demonstrate the effectiveness and feasibility of the active disturbance rejection adaptive composite control strategy.

Key words: unmanned vehicle-mounted guns, stabilization system, extended state observer, adaptive control, disturbance compensation

中图分类号: