欢迎访问《兵工学报》官方网站,今天是

兵工学报 ›› 2025, Vol. 46 ›› Issue (8): 240081-.doi: 10.12382/bgxb.2024.0081

• • 上一篇    下一篇

暗环境下红外目标检测跟踪方法研究

刘辉1,2, 李明益1, 韩立金1,2,*(), 刘宝帅1   

  1. 1.北京理工大学 机械与车辆学院, 北京 100081
    2.北京理工大学 前沿技术研究院(济南), 山东 济南 250300
  • 收稿日期:2024-01-26 上线日期:2025-08-28
  • 通讯作者:
  • 基金资助:
    北京市科技新星计划项目(20230484262); 教育部集成攻关大平台项目(CX02T01)

Research on Infrared Target Detection and Tracking in Dark Environments

LIU Hui1,2, LI Mingyi1, HAN Lijin1,2,*(), LIU Baoshuai1   

  1. 1. School of Mechanical Engineering, Beijing Institute of Technology, Beijing 100081, China
    2. Advanced Technology Research Institute (Jinan), Beijing Institute of Technology, Jinan 250300, Shandong, China
  • Received:2024-01-26 Online:2025-08-28

摘要:

针对暗环境动态特征轮廓模糊、盲区遮挡情况,高效准确地检测跟踪动态目标特征,对灾害救援、搜寻跟踪具有实际意义。为实现暗环境下模糊轮廓特征的有效检测跟踪,提出一种时空关联机制的红外目标实时检测深度学习网络(Spatial Local Dynamic You Only Look Once Version 8,SLD-YOLOv8),设计非局部自适应Non-local模块和空间通道卷积关联模块,对原YOLOv8网络的瓶颈层Bottleneck CSP进行优化。为有效提取深层空间多尺度表征信息,增加用于小目标检测的160×160检测层和动态检测头,较好地提升暗环境中目标跟踪的边界回归性能,并实时有效地推理出目标特征的相对深度位置信息。实验结果表明,改进后的红外目标检测算法对暗环境下的动态特征检测具有较好的鲁棒性和准确性,其平均精度评估指标mAP_0.5和mAP_0.5:0.95比原模型提高了5.6%和4.5%,证明了新算法对暗环境目标跟踪的有效性。

关键词: 暗环境, 深度学习, 注意力机制, 目标跟踪检测, 非局部域机理, 动态检测头

Abstract:

The efficient and accurate detection and tracking of dynamic target features in dark environments,where contours are blurred and occlusions are present,hold practical significance for disaster relief,search and tracking operations.To effectively detect and track the blurred contour features in dark environments,an improved real-time infrared target tracking and detection algorithm is proposed.This algorithm,based on the deep learning network (Spatial Local Dynamic You Only Look Once,SLD-YOLOv8),incorporates a non-local adaptive module and a spatial channel convolution (SCC) correlation module to optimize the Bottleneck CSP of YOLOv8 network for better feature extraction.A dedicated 160×160 detection layer and a dynamic head are introduced for the improved detection of small-scale targets and the enhanced boundary regression capabilities in low-light scenarios,enabling the accurate real-time inference of relative target position.Experimental validation shows that the proposed algorithm has good robustness and accuracy in detecting the dynamic features in dark environments.The average precision evaluation metrics mAP_0.5 and mAP_0.5:0.95 of this model are increased by 5.6% and 4.5%,respectively,compared to the original model,affirming its effectiveness of tracking the targets in dark environments.

Key words: dark environments, deep learning, attention mechanism, target detection and tracking, non-local, dynamic head