欢迎访问《兵工学报》官方网站,今天是

兵工学报

• •    下一篇

基于多尺度双重注意力网络的雷达信号调制识别方法

廖仁龙1,罗忠涛1*,殷水军2,张伟3   

  1. 1. 重庆邮电大学 通信与信息工程学院; 2.武汉船舶通信研究所; 3. 电子科技大学 信息与通信工程学院
  • 收稿日期:2024-06-06 修回日期:2025-07-17
  • 基金资助:
    国家自然科学基金项目(62371093、62231006);重庆市教委科学技术研究项目(KJQN202300633)

Radar Signal Modulation Recognition Method Based on Multi-Scale Dual Attention Network

LIAO Renlong1, LUO Zhongtao1*, YIN Shuijun2, ZHANG Wei 3   

  1. 1. School of Communication and Information Engineering, Chongqing University of Posts and Telecommunications; 2. Wuhan Maritime Communication Research Institute; 3. School of Information and Communication Engineering,University of Electronic Science and Technology of China
  • Received:2024-06-06 Revised:2025-07-17

摘要: 针对低信噪比环境下复杂多类雷达信号调制识别准确率低的问题,提出一种基于时频融合特征与多尺度双重注意力网络的新方法。通过应用平滑伪Wigner-Ville分布、傅里叶同步压缩变换和基于变分模态分解的希尔伯特黄变换3种时频分析方法,并结合去噪预处理技术,将雷达信号转换为三通道时频特征图,显著增强了特征的稳健性与表达力。设计了一种多尺度双重注意力网络,通过多尺度通道注意力机制实现跨尺度信息融合与噪声抑制,同时利用多尺度空间注意力自适应感知雷达信号的时频结构,并通过门控融合与残差连接技术进一步整合信息。实验结果表明,在信噪比为-10 dB的条件下,新方法对12类典型雷达信号调制方式的平均识别率达到98.99%,显示出良好的稳健性。

关键词: 雷达信号, 时频分析, 深度学习, 多尺度空间, 注意力机制

Abstract: Addressing the issue of low recognition rates for complex multi-class radar signal modulation types under low signal-to-noise ratios(SNR), a new method based on time-frequency fusion features and multi-scale dual attention network is proposed. By applying three time-frequency analysis methods, namely, smoothed pseudo Wigner-Ville distribution, Fourier synchrosqueezed transform, and Hilbert-Huang transform based on variational modal decomposition, and combining with denoising preprocessing techniques, the radar signals are transformed into three-channel time-frequency feature maps, which significantly enhances the robustness and expressive power of the features. A multi-scale dual attention network is further designed to realize cross-scale information fusion and noise suppression through the multi-scale channel attention mechanism, while the multi-scale spatial attention is used to adaptively perceive the time-frequency structure of the radar signals and integrate the information through gated fusion and residual connection. The experimental results show that the method achieves an overall recognition rate of 98.99% for 12 types of typical radar signal modulation modes under the condition of a signal-to-noise ratio of -10 dB, showing good robustness.

Key words: radar signal, time-frequency analysis, deep learning, multi-scale space, attention mechanism

中图分类号: