[1] |
MANNE A. A target-assignment problem[J]. Operations Research, 1958, 6(3):346-351.
|
[2] |
SUN Q, LI H X, WANG Y Z, et al. Multi-swarm-based cooperative reconfiguration model for resilient unmanned weapon system-of-systems[J]. Reliability Engineering & System Safety, 2022, 222:108426.
|
[3] |
SILAV A, KARASKAL E, KARASKAL O. Bi-objective dynamic weapon-target assignment problem with stability measure[J]. Annals of Operations Research, 2022, 311(2):1229-1247.
|
[4] |
FENG Q L, CAI H, CHEN Z L. Using game theory to optimize the allocation of defensive resources on a city scale to protect chemical facilities against multiple types of attackers[J]. Reliability Engineering & System Safety, 2019, 191:105900.
|
[5] |
罗锐涵, 李顺民. 基于改进BBO算法的火力分配方案优化[J]. 南京航空航天大学学报, 2020, 52(6):897-902.
|
|
LUO R H, LI S M. Optimization of firepower allocation based on improved BBO algorithm[J]. Journal of Nanjing University of Aeronautics & Astronautics, 2020, 52(6):897-902. (in Chinese)
|
[6] |
李梦杰, 常雪凝, 石建迈, 等. 武器目标分配问题研究进展:模型、算法与应用[J]. 系统工程与电子技术, 2023, 45(4):1049-1071.
doi: 10.12305/j.issn.1001-506X.2023.04.14
|
|
LI M J, CHANG X N, SHI J M, et al. Developments of weapon target assignment problem:models,algorithms,and applications[J]. Systems Engineering and Electronics, 2023, 45(4):1049-1071. (in Chinese)
|
[7] |
ZHAO Y, LIU J C, JIANG J, et al. Shuffled frog leaping algorithm with non-dominated sorting for dynamic weapon-target assignment[J]. Journal of Systems Engineering and Electronics, 2023, 34(4):1007-1019.
doi: 10.23919/JSEE.2023.000102
|
[8] |
LLOYD S P, WITSENHAUSEN H S. Weapons allocation is NP-complete[C]// Proceedings of the 1986 Summer Simulation Conference. San Diego,CA,US: Society for Computer Simulation, 1986:1054-1058.
|
[9] |
NI M F, YU Z K, MA F, et al. A Lagrange relaxation method for solving weapon-target assignment problem[J]. Mathematical Problems in Engineering, 2011, 2011(1):873292.
|
[10] |
DAVIS M T, ROBBINS M J, LUNDAY B J. Approximate dynamic programming for missile defense interceptor fire control[J]. European Journal of Operational Research, 2017, 259(3):873-886.
|
[11] |
AHNER D K, PARSON C R. Optimal multi-stage allocation of weapons to targets using adaptive dynamic programming[J]. Optimization Letters, 2015, 9(8):1689-1701.
|
[12] |
XIN B, WANG Y P, CHEN J. An efficient marginal-return-based constructive heuristic to solve the sensor-weapon-target assignment problem[J]. IEEE Transactions on Systems Man Cybernetics-Systems, 2019, 49(12):2536-2547.
|
[13] |
LAI C M, WU T H. Simplified swarm optimization with initialization scheme for dynamic weapon-target assignment problem[J]. Applied Soft Computing, 2019, 82:105542.
|
[14] |
CHANG T Q, KONG D P, HAO N, et al. Solving the dynamic weapon target assignment problem by an improved artificial bee colony algorithm with heuristic factor initialization[J]. Applied Soft Computing, 2018, 70:845-863.
|
[15] |
LUO W L, LU J H, LIU K X, et al. Learning-based policy optimization for adversarial missile-target assignment[J]. IEEE Transactions on Systems Man Cybernetics-Systems, 2022, 52(7):4426-4437.
|
[16] |
王邑, 孙金标, 肖明清, 等. 基于类型2区间模糊K近邻分类器的动态武器目标分配方法研究[J]. 系统工程与电子技术, 2016, 38(6):1314-1319.
|
|
WANG Y, SUN J B, XIAO M Q, et al. Research of dynamic weapon-target assignment problem based on type-2 interval fuzzy K-nearest neighbors classifier[J]. Systems Engineering and Electronics, 2016, 38(6):1314-1319. (in Chinese)
doi: 10.3969/j.issn.1001-506X.2016.06.15
|
[17] |
WANG T, FU L Y, WEI Z X, et al. Unmanned ground weapon target assignment based on deep Q-learning network with an improved multi-objective artificial bee colony algorithm[J]. Engineering Applications of Artificial Intelligence, 2023, 117:105612.
|
[18] |
YIN Y F, ZHANG R T, SU Q R. Threat assessment of aerial targets based on improved GRA-TOPSIS method and three-way decisions[J]. Mathematical Biosciences and Engineering, 2023, 20(7):13250-13266.
doi: 10.3934/mbe.2023591
pmid: 37501487
|
[19] |
孙海文, 于邵祯, 江源, 等. 海上无人机蜂群目标威胁评估方法[J]. 兵工学报, 2022, 43(增刊2):32-39.
|
|
SUN H W, YU S Z, JIANG Y, et al. Target threat assessment method for UAV swarm at sea[J]. Acta Armamentarii, 2022, 43(S2):32-39 (in Chinese)
|
[20] |
DEB K, JAIN H. An evolutionary many-objective optimization algorithm using reference-point-based nondominated sorting approach,part I:solving problems with box constraints[J]. IEEE Transactions on Evolutionary Computation, 2014, 18(4):577-601.
|
[21] |
DAMIA A, ESNAASHARI M, PARVIZIMOSAED M. Adaptive genetic algorithm based on mutation and crossover and selection probabilities[C]// Proceeding of the 2021 7th International Conference on Web Research. Tehran,Iran: IEEE, 2021:86-90.
|
[22] |
ZHAO Y, CHEN Y F, ZHEN Z Y, et al. Multi-weapon multi-target assignment based on hybrid genetic algorithm in uncertain environment[J]. International Journal of Advanced Robotic Systems, 2020, 17(2):1729881420905922.
|
[23] |
LU Z H, CHEN Y M, LIU H J, et al. A high-power-density design method for polymer gear systems via an adaptive non-dominated sorting genetic algorithm III and surrogate sub-models[J]. Materials & Design, 2024, 240:112875.
|
[24] |
GUERREIRO A P, FONSECA C M, PAQUETE L I S. The hypervolume indicator:computational problems and algorithms[J]. ACM Computing Surveys, 2021, 54(6):1-42.
|
[25] |
于博文, 吕明. 基于D-NSGA-GKM算法的多阶段武器协同火力分配方法[J]. 控制与决策, 2022, 37(3):605-615.
|
|
YU B W, LÜ M. Optimization method for multi-stage collaborative weapon firepower distribution based on D-NSGA-GKM algorithm[J]. Control and Decision, 2022, 37(3):605-615. (in Chinese)
|