欢迎访问《兵工学报》官方网站,今天是

兵工学报 ›› 2025, Vol. 46 ›› Issue (1): 231135-.doi: 10.12382/bgxb.2023.1135

• • 上一篇    下一篇

基于改进EHO算法的主轴承组合结构多结构特性协同优化设计方法

赵鑫1,2,*(), 苏铁熊3, 马富康3, 史建华1,2, 柴常1   

  1. 1 山西大同大学 机电工程学院, 山西 大同 037009
    2 山西省数字化产线孪生运维及控制技术工程研究中心,山西 大同 037009
    3 中北大学 能源动力工程学院, 山西 太原 030051
  • 收稿日期:2023-11-27 上线日期:2025-01-25
  • 通讯作者:
  • 基金资助:
    山西省基础研究计划项目(202203021222299); 山西省基础研究计划项目(202103021224216); 山西省基础研究计划项目(202303021211330); 山西省高等学校科技创新项目(2022L430)

Collaborative Optimization Design Method of Main Bearing Assembly Structure with Multi-structural Characteristics Based on Improved EHO Algorithm

ZHAO Xin1,2,*(), SU Tiexiong3, MA Fukang3, SHI Jianhua1,2, CHAI Chang1   

  1. 1 School of Mechanical and Electrical Engineering, Shanxi Datong University, Datong 037009, Shanxi, China
    2 Shanxi Province Engineering Research Center Based on Twin Operation and Control Technology for Digital Production Lines,Datong 037009, Shanxi, China
    3 School of Energy and Power Engineering,North University of China, Taiyuan 030051, Shanxi, China
  • Received:2023-11-27 Online:2025-01-25

摘要:

随着柴油机功率密度的提升,主轴承组合结构将面临主轴承变形加剧、关键部件强度下降等可靠性问题。以主轴承组合结构作为优化设计对象,将强度、刚度、接触强度和轻量化表现作为优化目标,构建多结构特性协同优化设计数学模型。针对传统快速和精英保留多目标遗传算法(Non-dominated Sorting Genetic Algorithm II,NSGA-II)在求解小种群规模、有限进化代数的复杂工程问题时计算效率低的问题,基于Pareto优化理论,引入自适应策略及固定候选集随机测试算法,提出改进的大象放牧优化(Elephant Herding Optimization,EHO)算法用于求解多结构特性协同优化设计数学模型,并对算法性能及协同优化设计方案进行试验验证。研究结果表明:在小种群规模和有限进化代数下,改进EHO算法的求解能力更强,计算效率更高;在质量波动仅为0.6%的情况下,机体和主轴承座的应力分别降低18.67%和11.06%;各考察截面失圆度平均值降低14.39%;机体与主轴承座接触面最大接触压力降低18.92%。

关键词: 主轴承组合结构, 多目标优化, 协同设计, 改进EHO算法

Abstract:

As the power density of diesel engines increases,the main bearing assembly structure may suffer from reliability problems such as the increased deformation of main bearing and the decreased strength of key components.The strength,stiffness,contact strength and lightweight performance of main bearing assembly structure are taken as the optimization objectives,and a mathematical model for the collaborative optimization design of multi-structural characteristics is constructed.Aiming at the poor computational efficiency of the traditional non-dominated sorting genetic algorithm II(NSGA-II) in solving the complex engineering problems with small population size and restricted evolutionary generations,an improved elephant herding optimization(EHO) algorithm is proposed for solving the reliability matching mathematical model for the main bearing assembly structure based on the Pareto optimization theory by introducing the adaptive strategy and fixed sized candidate set random testing algorithm.Furthermore,the performance of the improved EHO algorithm and the reliability matching design scheme are experimentally verified.The results show that the improved EHO algorithm has stronger solving ability and higher computational efficiency with small population size and restricted evolutionary generations.After optimization,the first principal stresses in the stress-concentrated areas of engine block and main bearing cover are decreased by 18.67% and 11.06%,respectively,with a mass fluctuation of only 0.6%; and the average out-of-roundness in each examined section is decreased by 14.39%; and the maximum contact pressure on the contact surface between the engine block and the main bearing cover is decreased by 18.92%.

Key words: main bearing assembly structure, multi-objective optimization, collaborative design, improved EHO algorithm

中图分类号: