欢迎访问《兵工学报》官方网站,今天是 分享到:

兵工学报 ›› 2024, Vol. 45 ›› Issue (1): 69-84.doi: 10.12382/bgxb.2023.0487

• • 上一篇    下一篇

破片杀伤战斗部空爆状态下车顶夹芯板防护性能分析与优化设计

傅耀宇1, 贵新成1, 周云波2,*(), 刘家志2, 石昊1, 王铮1   

  1. 1 63969部队, 江苏 南京 211113
    2 南京理工大学 机械工程学院, 江苏 南京 210094
  • 收稿日期:2023-05-23 上线日期:2024-01-30
  • 通讯作者:
  • 基金资助:
    国家自然科学基金项目(51405232)

Protection Performance Analysis and Optimization Design of Vehicle Roof Sandwich Plateunder Air Explosion Condition of Fragment Warhead

FU Yaoyu1, GUI Xincheng1, ZHOU Yunbo2,*(), LIU Jiazhi2, SHI Hao1, WANG Zheng1   

  1. 1 Unit 63969 of PLA, Nanjing 211113, Jiangsu, China
    2 School of Mechanical Engineering, Nanjing University of Science and Technology, Nanjing 210094, Jiangsu, China
  • Received:2023-05-23 Online:2024-01-30

摘要:

在现代战争中,为实现远程精确打击,众多破片杀伤战斗部选择车辆顶部作为首选攻击位置,而目前国内外关于冲击波和破片联合作用下车辆顶部防护的研究基本没有。为提高特种车辆顶部防护性能并实现结构轻量化设计,通过北约一级替代装药爆炸试验和破片飞散理论计算,验证了数值模拟的有效性和准确性。根据LS-DYNA软件分析结果数据和破片外弹道方程,采用Python软件等编写用于分析不同起爆高度下破片落点分布的解算处理程序。设计一种I-Y型夹芯板,并与另外5种不同结构夹芯板的防护性能进行综合比较,证明了该型板的优越性。进而以质量损失、能量吸收、背板峰值位移及破片速度分布为评价标准,研究炸药起爆方式、炸药相对位置、面板和背板厚度、夹芯层结构参数对I-Y型板防护性能的影响。选择面板厚度、背板厚度、夹芯层高度和胞元宽度为设计变量,以背板峰值位移和夹芯板质量为优化目标,用最优拉丁超立方试验方法进行采样,采用Kriging法构建代理模型,用非支配排序遗传算法进行多目标优化求解,并对最优解进行仿真验证,为冲击波和破片联合作用下车顶防护结构优化设计提供了支持。

关键词: 预制破片, 飞散初速度, I-Y型夹芯板, 防护性能, 多目标优化

Abstract:

In modern warfare, many fragmentation warheads choose the top of vehicle as the preferred attack position to achieve long-range precision strike, but there is little research on the top protection of vehicle under the combined action of shock wave and fragmentation at home and abroad. In order to improve the protection performance of the top of special vehicle and realize the lightweight structural design, The effectiveness and accuracy of numerical simulation are verified by the NATO first-stage alternative charge explosion test and the theoretical calculation of fragment dispersion. A solution processing program for analyzing the fragment point distribution at different initiation heights is written by using Python according to the LS-DYNA analysis result data and the fragment ballistic equation. Then, an I-Y type sandwich plate is designed and compared with another five types of sandwich plates with different structures to prove its superiority. Further, The effects of explosive initiation mode, relative position of explosive, thicknesses of panel and backplane, and structural parameters of sandwich layer on the protection performance of I-Y plate are studied by taking the mass loss, energy absorption, peak displacement and fragment velocity distribution as evaluation criteria. Finally, the thickness of panel, the thickness of backplane, the height of sandwich layer and the width of cell are selected as the design variables, and the peak displacement of backplane and the quality of sandwich plate are taken as the optimization objectives. The optimal Latin Hypercube test method is used for sampling, Kriging method is used to construct the proxy model.and NSGA-Ⅱ genetic algorithm is used for multi-objective optimization. the optimal solution is simulated and verified, which provides support for the optimization design of roof protection structure under the combined action of shock waves and fragments.

Key words: prefabricated fragment, dispersion initial velocity, I-Y shaped sandwich plate, protection performance, multi-objective optimization

中图分类号: