欢迎访问《兵工学报》官方网站,今天是

兵工学报 ›› 2025, Vol. 46 ›› Issue (10): 250482-.doi: 10.12382/bgxb.2025.0482

• • 上一篇    下一篇

高熵合金活性破片的毁伤效应与碎片云特性

王圣芳1,2, 常慧1,2,*(), 焦志明1,2, 尹云飞1,2, 张团卫1,2, 李志强1,2, 王志华1,2,**()   

  1. 1 太原理工大学 航空航天学院, 太原 030024
    2 太原理工大学 山西省材料强度与结构冲击重点实验室, 太原 030024
  • 收稿日期:2025-06-10 上线日期:2025-11-05
  • 通讯作者:
  • 基金资助:
    国家自然科学基金项目(12302480); 国家自然科学基金项目(12225207); 国家自然科学基金项目(12272255)

Study on the Damage Effect and Debris Cloud Characteristics of Reactive Fragments of High-entropy Alloys

WANG Shengfang1,2, CHANG Hui1,2,*(), JIAO Zhiming1,2, YIN Yunfei1,2, ZHANG Tuanwei1,2, LI Zhiqiang1,2, WANG Zhihua1,2,**()   

  1. 1 College of Aerospace Engineering, Taiyuan University of Technology, Taiyuan 030024, China
    2 Shanxi Key Laboratory of Material Strength and Structural Impact, Taiyuan University of Technology, Taiyuan 030024, China
  • Received:2025-06-10 Online:2025-11-05

摘要:

含能高熵合金在作为活性破片材料以提升武器弹药的穿燃毁伤效应中具有潜力,而其毁伤效应和机理亟待研究。为了研究含能高熵合金的毁伤效果和爆燃过程中的碎片云特性,利用二级轻气炮装置开展了不同速度下TiZrHfTa0.5高熵合金对间隔铝靶的毁伤实验,通过高速摄像拍摄穿孔爆燃行为,对靶后碎片云的形成过程进行了理论分析和光滑粒子流体动力学数值模拟分析。研究结果表明, 含能高熵合金在超过临界速度后发生剧烈释能爆燃,随着侵彻速度的增加,迎弹靶扩孔直径增大,后效靶贯穿面积与毁伤面积增大。这是由于碎片云的碎片数量随着速度增加而急剧增多,速度梯度增大,极大促进含能特性的释放,毁伤效果增强。理论分析结合实验结果给出了修正的穿孔直径经验公式。分析碎片尺寸得出,碎片的细化更有利于化学能和动能的综合作用,毁伤效果更佳。

关键词: 高熵合金, 活性破片, 间隔靶毁伤, 光滑粒子流体动力学模拟

Abstract:

Energetic high-entropy alloys (EHEAs) hold significant promise as active fragmentation materials for enhancing the penetration, ignition, and damage efficacy of weaponry and ammunition systems. Nevertheless, a pressing need exists for in-depth investigations into their damage mechanisms and corresponding effects. To investigate the damage effects of EHEAs and the characteristics of the fragment cloud during the deflagration process, a two-stage light gas gun is employed to conduct damage experiments on spaced aluminum targets, utilizing the TiZrHfTa0.5 high-entropy alloy at varying impact velocities. High-speed photography is utilized to document the perforation deflagration behavior, and theoretical analyses are performed to elucidate the formation process of the debris cloud behind the target. Additionally, smoothed particle hydrodynamics (SPH) numerical simulations are carried out to supplement the experimental findings. The experimental results demonstrate that EHEAs exhibit intense exothermic detonation behavior upon exceeding a critical impact velocity. As the penetration velocity increases, a positive correlation is observed between the impact velocity and the diameter of the entry hole on the target, leading to an augmented penetrative and damage area on the rear target. This phenomenon can be attributed to the exponential growth in the number of fragments within the debris cloud with increasing velocity, and the velocity gradient significantly promotes the release of energetic characteristics, thereby magnifying the overall damage effects. Based on a comprehensive theoretical analysis and experimental data, a modified empirical formula for predicting the perforation diameter is proposed. Fragment size analysis further reveals that the refinement of fragments facilitates the synergistic interaction between chemical and kinetic energy, ultimately enhancing the damage performance of EHEAs.

Key words: high entropy alloy, active fragments, damage to spaced targets, SPH simulation