欢迎访问《兵工学报》官方网站,今天是

兵工学报

• •    下一篇

Al15(CoCrFeNi)85高熵合金的动态冲击力学响应与变形机制

凌静,梁延祥,敬霖*   

  1. 西南交通大学 轨道交通运载系统全国重点实验室,四川 成都 610031
  • 收稿日期:2025-06-12 修回日期:2025-07-17
  • 基金资助:
    国家自然科学基金项目(12122211、52301111)

Dynamic Impact Mechanics Response and Deformation Mechanisms of Al15(CoCrFeNi)85 High-Entropy Alloy

LING Jing, LIANG Yanxiang, JING Lin *   

  1. State Key Laboratory of Rail Transit Vehicle system, Southwest Jiaotong University, Chengdu 610031, Sichuan, China
  • Received:2025-06-12 Revised:2025-07-17

摘要: FCC/BCC双相Alx(CoCrFeNi)100-x系高熵合金因其优异的综合性能,在抗冲击结构材料领域具有重要的应用前景,深入研究其动态压缩力学行为具有重要意义。本文以轧制-时效工艺所制备的亚稳态双相Al15(CoCrFeNi)85高熵合金为研究对象,采用万能试验机、霍普金森压杆(SHPB)、电子背散射衍射(EBSD)、分子动力学(MD)模拟研究了其静动态压缩力学性能,分析了其塑性应力-应变响应特性、应变率敏感性及微观变形机制,阐明了其动态压缩强化机理,建立了亚稳态双相Al15(CoCrFeNi)85的动态压缩本构模型。结果表明,Al15(CoCrFeNi)85动态压缩加载下表现出显著的应变率相关性,动态压缩流动应力随应变增加呈现先平稳增加后大幅提升趋势;母材为FCC(71.4%)/BCC(28.6%)双相结构,单轴压缩加载下发生FCC相向BCC相转变,且受应变率影响较大,准静态压缩下FCC相与BCC相比值约为1:1,动态压缩下此相比值约为3:7,该相变行为与动态压缩流动应力大幅提升现象有关;MD模拟与实验结果一致,Al15(CoCrFeNi)85存在明显应变率效应且变形机制由相变主导,随着BCC相的增加,塑性变形逐渐由BCC相中的全位错主导;基于Johnson-Cook本构模型,建立了亚稳态双相Al15(CoCrFeNi)85合金动态压缩本构模型。研究结果可为其抗冲击结构材料设计与应用提供重要理论依据。

关键词: 高熵合金, 动态力学性能, J-C本构模型, 分子动力学模拟

Abstract: The FCC/BCC dual-phase Alx(CoCrFeNi)100-x high-entropy alloys (HEAs) exhibit outstanding comprehensive properties, demonstrating significant potential for impact-resistant structures. This study focused on a metastable dual-phase Al15(CoCrFeNi)85 fabricated via rolling and aging processes. The quasi-static and dynamic compressive mechanical properties were characterized using a universal testing machine, split Hopkinson pressure bar (SHPB), electron backscatter diffraction (EBSD), and molecular dynamics (MD) simulations. The plastic stress-strain response, strain rate sensitivity, and microscopic deformation mechanisms were analyzed. The strengthening mechanism under dynamic compression was elucidated. The dynamic constitutive model was established. The alloy exhibited strain rate sensitivity, with the dynamic compressive flow stress showing an initial steady increase followed by a sharp rise with increasing strain. The base material consisted of 71.4% FCC and 28.6% BCC phases. Under uniaxial compression, the processing of the FCC to BCC phase transformation was strain-rate-dependent. Here was a balanced fraction (1:1) of FCC/BCC phases under quasi-static loading, whereas it was approximately 3/7 under dynamic loading. MD simulations confirmed the phase-transformation-dominated deformation mechanism. The plastic deformation shifted to full dislocation slip in BCC phases as their fraction increases. A modified Johnson-Cook constitutive model predicted the dynamic stress-strain response. These findings can provide a theoretical guidance for the design and application of HEAs in impact-resistant structures.

Key words: high entropy alloy, dynamic mechanical properties, J-C constitutive model, molecular dynamics simulation

中图分类号: