欢迎访问《兵工学报》官方网站,今天是

兵工学报 ›› 2025, Vol. 46 ›› Issue (10): 250439-.doi: 10.12382/bgxb.2025.0439

• • 上一篇    下一篇

铝纳米颗粒在CL-20爆轰气氛中后燃反应的分子动力学模拟

钟浩元1, 宋清官2,3, 姜胜利2,4,*(), 张蕾1,**(), 庞思平1   

  1. 1 北京理工大学材料学院, 北京 100081
    2 北京应用物理与计算数学研究所, 北京 100094
    3 中国工程物理研究院 化工材料研究所, 四川 绵阳 621999
    4 中国工程物理研究院高性能数值模拟软件中心, 北京 100088
  • 收稿日期:2025-06-03 上线日期:2025-11-05
  • 通讯作者:
  • 基金资助:
    国家自然科学基金项目(12222204); 国家自然科学基金项目(12472361)

Molecular Dynamics Simulation of Afterburning Reactions of Aluminum Nanoparticles in the Detonation Product Atmosphere of CL-20

ZHONG Haoyuan1, SONG Qingguansong2,3, JIANG Shengli2,4,*(), ZHANG Lei1,**(), PANG Siping1   

  1. 1 School of Material Science and Engineering, Beijing Institute of Technology, Beijing 100081, China
    2 Institute of Applied Physics and Computational Mathematics, Beijing 100094, China
    3 Institute of Chemical Materials, China Academy of Engineering Physics, Mianyang 621999, Sichuan, China
    4 Software Center for High Performance Numerical Simulation, China Academy of Engineering Physics, Beijing 100088, China
  • Received:2025-06-03 Online:2025-11-05

摘要:

为研究纳米铝颗粒在含铝炸药爆轰产物气氛中的后燃反应机理,采用反应力场ReaxFF-lg结合反应分子动力学方法,模拟了10nm ANP在CL-20主要爆轰产物(CO2、H2O、CO和N2)构成的高温高压环境中(2500~3500K)的燃烧过程,从原子尺度揭示其在多组分氧化性气氛中的反应机制。结果表明,随温度升高,H—Al和H—C键生成量减少,说明高温不利于氢相关稳定结构的形成;CO2的产物比例是决定爆温的关键因素,且在2500~3500K范围内,CO2比H2O具有更强的反应活性,在促进铝氧化和能量释放中起主导作用。所以,提高爆轰产物中CO2的比例,有助于调控爆温并提升ANP的燃烧效率,从而实现更充分的能量释放。为高威力炸药配方的科学设计提供了理论参考。

关键词: 含铝炸药, 铝纳米颗粒, 后燃反应, ReaxFF反应力场, 分子动力学

Abstract:

The afterburning reaction mechanisms of aluminum nanoparticles (ANPs) in the detonation product atmosphere of aluminized explosives are studied using the ReaxFF-lg reactive force field alongside reactive molecular dynamics (MD) simulations. The combustion process of a 10nm ANP is simulated in a high-temperature and high-pressure environment (2500~3500K) containing the principal detonation products of CL-20 (CO2, H2O, CO, and N2), revealing the reaction mechanism of ANP in a multi-component oxidizing atmosphere at the atomic scale. Results indicate that the formation of H—Al and H—C bonds decreases as the temperature rises, which indicates that the elevated temperatures are not conducive to the creation of hydrogen-related stable structures. Additionally, the proportion of CO2 among detonation products emerges as the primary determinant of detonation temperature. CO2 demonstrates greater reactivity than H2O and plays a pivotal role in promoting the oxidation of aluminum oxidation and the release of energy within the range of 2500~3500K. Thus, increasing the content of CO2 in detonation products can effectively regulate detonation temperature and boost the combustion efficiency of ANPs, enabling more complete energy release. These findings offer a theoretical foundation for designing high-performance aluminized explosive formulations.

Key words: aluminized explosive, aluminum nanoparticle, afterburning reaction, ReaxFF reactive force field, molecular dynamics