| [1] |
马志伟, 李园, 郭明哲, 等. 燃烧爆炸品工程安全防护体系现状及问题分析[J]. 兵工学报, 2024, 45(S2): 293-304.
|
|
MA Z W, LI Y, GUO M Z, et al. Analysis of the current situation and problems of safety protection system for combustion and explosive engineering[J]. Acta Armamentarii, 2024, 45(S2): 293-304. (in Chinese)
|
| [2] |
HRING I, SCHNHERR M, RICHTER C. Quantitative hazard and risk analysis for fragments of high-explosive shells in air[J]. Reliability Engineering & System Safety, 2009, 94(9): 1461-1470.
|
| [3] |
QIN H, STEWART M G. Casualty risks induced by primary fragmentation hazards from high-explosive munitions[J]. Reliability Engineering & System Safety, 2021, 215: 107874.
|
| [4] |
MCCLESKEY F. Quantity-Distance Fragment Hazard Computer Program (FRAGHAZ)[R]. 1988.
|
| [5] |
HARDWICK M, HALL J, TATOM J, et al. Approved methods and algorithms for DOD risk-based explosives siting[R]. 2009: 341.
|
| [6] |
CATOVIC A, KLJUNO E. A novel method for determination of lethal radius for high-explosive artillery projectiles[J]. Defence Technology, 2020.
|
| [7] |
杨云川, 朱建军, 郑宇, 等. 战斗部壳体爆炸破片体/线分形维数研究[J]. 兵工学报, 2018, 39(8): 1499-1506.
|
|
YANG Y C, ZHU J J, ZHENG Y, et al. Research on the volume/line fractal dimension of warhead shell explosion fragments[J]. Acta Armamentarii, 2018, 39(8): 1499-1506. (in Chinese)
|
| [8] |
冯昌林, 施锐, 张兵, 等. 自然破片战斗部静态威力场重构方法[J]. 兵工学报, 2024, 45(S2): 283-292.
|
|
FENG C L, SHI R, ZHANG B, et al. Reconstruction method of static power field for natural fragment warheads[J]. Acta Armamentarii, 2024, 45(S2): 283-292. (in Chinese)
|
| [9] |
SUN Y, CHEN P, ZHAO C, et al. Size characteristics of fragments from expanding cylinders subjected to internal explosive detonations[J]. Journal of Materials Research and Technology, 2025, 36: 1451-1462.
|
| [10] |
NOH D, FAZILY P, SEO S, et al. Data driven prediction of fragment velocity distribution under explosive loading conditions[J]. Defence Technology, 2025, 43: 109-119.
|
| [11] |
PREDEBON W W, SMOTHERS W G, ANDERSON C E. Missile warhead modeling: computations and experiments[R]. Maryland, US: USA Ballistic Research Laboratory, 1977.
|
| [12] |
MOTT N F, LINFOOT E H, GRADY D. A theory of fragmentation[M]. Berlin: Springer Berlin Heidelberg, 2006.
|
| [13] |
WANG H, YU A, FENG C, et al. An efficient CDEM-based method to calculate full time-space natural fragment field of shell-bearing explosives[J]. International Journal of Impact Engineering, 2022, 161: 104099.
|
| [14] |
CATOVIC A, KLJUNO E. Prediction of the trajectory of an irregularly shaped body moving through a resistive medium with high velocities[J]. International Journal of Advanced and Applied Sciences, 2017, 4(11).
|
| [15] |
辛大钧, 薛琨. 基于人工神经网络的非球形破片阻力系数预测模型[J]. 兵工学报, 2022, 43(5): 1083-1092.
|
|
XIN D J, XUE K. Prediction model of resistance coefficient of non-spherical fragments based on artificial neural network[J]. Acta Armamentarii, 2022, 43(5): 1083-1092. (in Chinese)
|
| [16] |
LIU Y, PENG Q, FAN Z, et al. Safety assessment of explosion fragment projection in a wind field[J]. Journal of Loss Prevention in the Process Industries, 2025, 94: 105544.
|
| [17] |
WANG K, CHEN P, SUN X, et al. Fracture behavior and mechanism of highly fragmented steel cylindrical shell under explosive loading[J]. Defence Technology, 2024, 36: 122-132.
|
| [18] |
STERGIOU T, BAXEVANAKIS K P, ROY A, et al. Mechanics of ballistic impact with non-axisymmetric projectiles on thin aluminium targets. Part I: Failure mechanisms[J]. Engineering Failure Analysis, 2023, 150: 107152.
|
| [19] |
樊壮卿, 张双博, 卢芳云, 等. 人员易损性分析研究进展及应用综述[J]. 兵工学报, 2024, 45(9): 2888-2905.
|
|
FAN Z Q, ZHANG S B, LU F Y, et al. Research progress and application review of personnel vulnerability analysis[J]. Acta Armamentarii, 2024, 45(9): 2888-2905. (in Chinese)
|
| [20] |
WANG H, BAI C, FENG C. An efficient CDEM-based method to calculate full-scale fragment field of warhead[J]. International Journal of Impact Engineering, 2019, 133: 103331.
|
| [21] |
POWELL J G, SWIFT H F, MCCLESKEY F. Fragment hazard investigation program[R]. US: Naval Surface Weapons Center, 1978.
|
| [22] |
US Department of Defense. DOD ammunition and explosives safety standards[M]. Washington DC: US Department of Defense, 2004.
|
| [23] |
NATO Standardization Agreements. Manual of NATO safety principles for the transport of military ammunition and explosives-AASTP-2[M]. Brussels: NATO, 1997.
|
| [24] |
SONG B, JIAO W, CEN K, et al. Quantitative risk assessment of gas leakage and explosion accident consequences inside residential buildings[J]. Engineering Failure Analysis, 2021, 122: 105257.
|
| [25] |
QIN H, STEWART M G. Mitigating casualty risks from primary fragmentation hazards[J]. International Journal of Protective Structures, 2023.
|