| [1] |
蒋欣利, 张国凯, 何勇, 等. 密闭建筑温压炸药内爆炸后燃效应[J]. 兵工学报, 2024, 45(8): 2520-2530.
|
|
JIANG X L, ZHANG G K, HE Y, et al. Post explosion effects of thermal pressure explosives in enclosed buildings[J]. Journal of Ordnance Engineering, 2024, 45(8): 2520-2530. (in Chinese)
|
| [2] |
WANG Z, CHEN F, LIU P, et al. Shock activation theory for aluminum nano-particles outside high explosives[J]. Combustion and Flame, 2025, 272: 113882.
|
| [3] |
王伯良, 李亚宁, 韩志伟. 温压炸药发展趋势的几点思考[J]. 火炸药学报, 2023, 46(11): 935-936.
|
|
WANG B L, LI Y N, HAN Z W. Several thoughts on the development trend of thermobaric explosives[J]. Journal of Fireworks and Explosives, 2023, 46(11): 935-936. (in Chinese)
|
| [4] |
ZHOU Z Q, CHAI L J, ZHANG Y L, et al. Experimental study on oxidation and shell-breaking characteristics of individual aluminum particles at high temperature[J]. Powder Technology, 2024, 431: 119087.
|
| [5] |
刘正, 聂建新, 阚润哲, 等. 铝粉燃烧对CL-20基混合炸药水下爆炸载荷特性的影响[J]. 兵工学报, 2025, 46(3): 169-178.
|
|
LIU Z, NIE J X, KAN R Z, et al. Effect ofaluminum powder combustion on underwater explosion load characteristics of CL-20-based composite explosives[J]. Journal of Ordnance Engineering, 2025, 46(3): 169-178. (in Chinese)
|
| [6] |
刘海, 何远航. 梯恩梯/萘共晶初始热分解的反应分子动力学模拟[J]. 兵工学报, 2016, 37(3): 414-423.
|
|
LIU H, HE Y H. Molecular dynamics simulation of initial thermal decomposition of TNT/naphthalene eutectic[J]. Journal of Ordnance Engineering, 2016, 37(3): 414-423. (in Chinese)
|
| [7] |
王成, 杨长鑫, 贾曦雨, 等. 含铝炸药深水爆炸能量输出特性高精度数值模拟研究[J]. 北京理工大学学报, 2024, 44(8): 872-878.
|
|
WANG C, YANG C X, JIA X Y, et al. High precision numerical simulation study on energy output characteristics of deepwater explosion of aluminum containing explosives[J]. Journal of Beijing Institute of Technology, 2024, 44(8): 872-878. (in Chinese)
|
| [8] |
黄菊, 王伯良, 仲倩, 等. 温压炸药能量输出结构的初步研究[J]. 爆炸与冲击, 2012, 32(2): 164-168.
|
|
HUANG J, WANG B L, ZHONG Q, et al. Preliminary study on the energy output structure of explosive mixtures with temperature and pressure[J]. Explosion and Shock Waves, 2012, 32(2): 164-168. (in Chinese)
|
| [9] |
BROUSSEAU P, ANDERSON C J. Nanometric aluminum in explosives[J]. Propellants, Explosives, Pyrotechnics, 2002, 27(5): 300-306.
|
| [10] |
钟凯, 张朝阳. 纳米铝颗粒在不同炸药环境中氧化燃烧的分子动力学模拟[J]. 含能材料, 2023, 31(1): 48-60.
|
|
ZHONG K, ZHANG C Y. Molecular dynamics simulation of oxidation and combustion of nano aluminum particles in different explosive environments[J]. Energy Materials, 2023, 31 (1): 48-60. (in Chinese)
|
| [11] |
GENG X, GAO W, JIANG H, et al. Inhibition mechanism of aluminum hypophosphite inhibits aluminum dust explosions: Experimental and reactive force field molecular dynamics simulations study[J]. International Journal of Hydrogen Energy, 2025, 102: 1315-1328.
|
| [12] |
VAN DUIN, ADRI, et al. Molecular dynamics simulations of the oxidation of aluminum nanoparticles using the ReaxFF reactive force field[J]. Journal of Physical Chemistry C Nanomaterials & Interfaces, 2015, 119(31): 17876-17886.
|
| [13] |
ZHAO Y, MA D X, ZHAO F Q, et al. Atomic insights into the combustion behavior of Al nano-droplets with H2O vapor at high temperature[J]. Applied Surface Science, 2022, 586: 152777.
|
| [14] |
FAN Z, ZHANG W, SHU Y, et al. Atomic insight into the combustion behavior of aluminum nanoparticles under mixed atmosphere of H2O, CO2 and O2 [J]. Acta Astronautica, 2023, 210: 151-161.
|
| [15] |
PLIMPTON S. Fast parallel algorithms for short-range molecular dynamics[J]. Journal of Computational Physics, 1995, 117(1): 1-19.
|
| [16] |
DUIN A C T V, DASGUPTA S, LORANT F, et al. ReaxFF: A reactive force field for hydrocarbons[J]. The Journal of Physical Chemistry A, 2001, 105(41): 9396-9409.
|
| [17] |
HAO W, NIU L, GOU R, et al. Influence of Al and Al2O3 Nanoparticles on the thermal decay of 1,3,5-Trinitro-1,3,5-triazinane (RDX): Reactive molecular dynamics simulations[J]. The Journal of Physical Chemistry C, 2019, 123(22): 14067-14080.
|
| [18] |
CHU Q, SHI B, LIAO L, et al. Ignition and oxidation of Core-Shell Al/Al2O3 nanoparticles in an oxygen atmosphere: Insights from molecular dynamics simulation[J]. The Journal of Physical Chemistry C, 2018, 122(51): 29620-29627.
|
| [19] |
ZHAO Y, ZHAO J S, ZHAO F Q, et al. Revealing the decomposition behavior of hexanitrostilbene and aluminum nanoparticles composites: A reactive molecular dynamics simulation[J]. Acta Astronautica, 2020, 177: 320-331.
|
| [20] |
ZHAO Y, ZHAO F Q, XU S Y, et al. Thermal decomposition mechanism of nitroglycerin by nano-aluminum hydride (AlH3): ReaxFF-lg molecular dynamics simulation[J]. Chemical Physics Letters, 2021, 770(4): 138443.
|
| [21] |
DONG R K, MEI Z, ZHAO F Q, et al. Molecular dynamics simulation on the reaction of nano-aluminum with water: size and passivation effects[J]. RSC Advances, 2019, 9(71): 41918-41926.
|
| [22] |
ZHENG R, LIU H, et al. Thermal behaviors and decomposition mechanism of PNIMMO with CL-20[J]. Journal of Analytical and Applied Pyrolysis, 2024, 179: 106457.
|
| [23] |
STUKOWSKI A. Visualization and analysis of atomistic simulation data with OVITO-the open visualization tool[J]. Modelling and simulation in materials science and engineering, 2010, 18(1): 2154-2162.
|
| [24] |
LI C, LI H, ZONG H H, et al. Strategies for achieving balance between detonation performance and crystal stability of high-energy-density materials[J]. iScience, 2020, 23(3): 100944.
|
| [25] |
DOLMATOV V Y, OZERIN A N, EIDELMAN E D, et al. Influence of the elemental composition of explosives on the yield of detonation nanodiamonds[J]. Combustion, Explosion, and Shock Waves, 2024, 60(6): 725-729.
|