[1] RUGGIRELLO K P, DESJARDIN P E, BAER M R, et al. A reaction progress variable modeling approach for non-ideal multiphase explosives[J]. International Joprnal of Multiphase Flow, 2012, 42:128-151. [2] 陈朗, 龙新平, 冯长根, 等. 含铝炸药爆轰[M]. 北京: 国防工业出版社, 2004. CHEN L, LONG X P, FENG C G, et al. Detonation of aluminized explosives[M]. Beijing: National Defense Industry Press, 2004.(in Chinese) [3] KEICHER T, HAPP A, KRETSCHMER A, et al. Influence of Al/ammonium perchlorate on the performance of underwater explosives[J]. Propellants, ExplosIves, Pyrotechnics, 1999, 24(3):140-143. [4] MANNER V W, PEMBERTON S J, GUNDERSON J A, et al. The role of aluminum in the detonation and post-detonation expansion of selected cast HMX-based explosives[J]. Propellants, Explosives, Pyrotechnics,2012, 37(2): 198-206. [5] 张伟, 闫石, 郭学永, 等. 端羟基聚叠氮缩水甘油醚与六硝基六氮杂异伍兹烷基四元混合炸药能量释放研究[J]. 兵工学报, 2018, 39(7):1299-1307. ZHANG W, YAN S, GUO X Y, et al. Study of the energy release of CL-20/GAP-based quaternary explosive[J]. Acta Armamentaii, 2018, 39(7):1299-1307.(in Chinese) [6] MISHRA V S, BHAGAT A L, VADALI S R, et al. Effect of tungsten on aluminized melt cast high explosive formulations[J]. Central European Journal of Energetic Materials, 2012, 9(2):147-54. [7] CARNEY J R, MILLER J S, GUMP J C, et al. Time-resolved optical measurements of the post-detonation combustion of aluminized explosives[J]. Review of Scientific Instruments, 2006, 77(6):063103. [8] ARKHIPOV V I, MAKHOV M N, PEPEKIN V I, et al. Investigations into detonation of aluminized high explosives[J]. Chemical Physics Reports, 2000, 18(12):2329-2337. [9] VADHE P P, PAWAR R B, SINHA R K, et al. Cast aluminized explosives[J]. Combustion, Explosion, and Shock Waves, 2008, 44(4):461-77. [10] TRZCIN′SKI W A, MAIZ L. Thermobaric and enhanced blast explosives-properties and testing methods[J]. Propellants, Explosives, Pyrotechnics, 2015, 40(5): 632-644. [11] 计冬奎, 高修柱, 肖川, 等. 含铝炸药作功能力和JWL状态方程尺寸效应研究[J]. 兵工学报, 2012, 33(5):552-555. JI D K, GAO X Z, XIAO C, et al. Study on dimension effect of accelerating ability and JWL equation of state for aluminized explosive[J]. Acta Armamentarii, 2012, 33(5):552-555.(in Chinese) [12] 荣吉利, 赵自通, 冯志伟, 等. 黑索今基含铝炸药水下爆炸性能的实验研究[J]. 兵工学报, 2019, 40(11):2177-2183. RONG J L, ZHAO Z T, FENG Z W, et al. Experimental study of underwater explosion performance of RDX-based aluminized explosive [J]. Acta Armamentarii, 2019, 40(11):2177-2183.(in Chinese) [13] TRZCINSKI W A, CUDZILO S, PASZULA J. Studies of free field and confined explosions of aluminum enriched RDX compositions[J]. Propellants, Explosives, Pyrotechnics, 2007, 32(6): 502-508. [14] TRZCINSKI W A, CUDZILO S, SZYMANCZYK L. Studies of detonation characteristics of aluminum enriched RDX compositions[J]. Propellants, Explosives, Pyrotechnics, 2007, 32(5): 392-400. [15] KUMAR A S, RAO V B, SINHA R K, et al. Evaluation of plastic bonded explosive (PBX) formulations based on RDX, aluminum, and HTPB for underwater applications[J]. Propellants, Explosives, Pyrotechnics, 2010, 35(4):359-364. [16] BECKSTEAD M W. Correlating aluminum burning times[J]. Combustion, Explosion and Shock Waves, 2005, 41(5):533-546. [17] BOJKO B T, DESJARDIN P E, WASHBURN E B. On modeling the diffusion to kinetically controlled burning llimits of micronsized aluminum particles[J].Combustion and Flame, 2014, 161(12): 3211-3221. [18] MADER C L. Two-dimensional homogeneous and heterogeneous wave propagation[C]∥Proceedings of the 6th Detonation Symposium. Coronado, CA, US: Office of Naval Research, 1976. [19] JOHNSON J N, TANG P K, FOREST C A. Shock wave initiation of heterogeneous reactive solids[J]. Journal of Applied Physics, 1985, 57(9):4323-4334. [20] STARKENBERG J. Modeling detonation propagation and failure using explosive initiation models in a conventional hydrocode[C]∥Proceedings of the 12nd Detonation Symposium. San Diego, CA,US: Office of Naval Research, 2002. [21] LEE E L, TARVER C M. Phenomenological model of shock initiation in heterogeneous explosives[J]. Physics of Fluids, 1980, 23(12):2362-2372. [22] KIM K. Development of a model of reaction rates in shocked multicomponent explosives[C]∥Proceedings of the 9th detonation symposium. Portland, OR, US: Office of The Chief of Naval Research, 1989. [23] 温丽晶, 段卓平, 张震宇, 等. 刚塑性粘结剂的双球壳塌缩热点反应模型[J]. 北京理工大学学报, 2011, 31(8):883-887. WEN L J, DUAN Z P, ZHANG Z Y, et al. Pore-collapse model of double hollow sphere with rigid-plastic binders for hot-spot ignition in shock explosives[J]. Transactions of Beijing Institute of Technology, 2011, 31(8):883-887.(in Chinese) [24] DUAN Z P, WEN L J, LIU Y, et al. A pore collapse model for hot-spot ignition in shocked multicomponent explosives[J]. International Journal of Nonlinear Sciences and Numerical Simulation, 2010, 11(S):19-23. [25] LIU Y R, DUAN Z P, ZHANG Z Y, et al. A mesoscopic reaction rate model for shock initiation of multi-component PBX explosives [J]. Journal of Hazardous Materials, 2016, 317:44-51. [26] LU J P. Simulation of underwater sympathetic reaction tests for PBXW-115 (Aust)[C]∥Proceedings of the 14th International Detonation Symposium. Coeur d'Alene, ID,US: Office of Naval Research, 2010. [27] LU J P, DANIEL M A, LOCHERT I J. Numerical and experimental studies of PBXN-109 sympathetic reaction[C]∥Proceedings of the 14th International Detonation Symposium. Coeur d'Alene, ID, US: Office of Naval Research, 2010. [28] BOHOON K. A reactive flow model for heavily aluminized cyclotrimethylene-trinitramine[J]. Journal of Applied Physics, 2014, 116(2):023512. [29] CAO T T, ZHOU L, ZHANG X R, et al. Shock initiation characteristics of an aluminized DNAN/RDX melt-cast explosive[J]. Journal of Energetic Materials, 2017, 35(4):1-13. [30] COOK M A, FILLER A S, KEYES R T, et al. Aluminized explosives[J]. Journal of Physical Chemistry, 1957, 61(2): 189-196. [31] BAI F, LIU Y, HUANG F L, et al. A reactive flow model for hot-spot ignition of shocked aluminized explosives with small size aluminum grains [J]. Simulation Transactions of the Society for Modeling & Simulation International, 2017, 93(3):177-183. [32] BAKER E L, CAPELLOS V, STIEL L I, et al. Accuracy and calibration of high explosive thermodynamic equations of state[J]. Journal of Energetic Materials, 2010, 28(Sup.1): 140-153. [33] GOGULYA M F, MAKHOV M N, DOLGOBORODOV Y A, et al. Mechanical sensitivity and detonation parameters of aluminized explosives[J]. Combustion, Explosion and Shock Waves, 2004, 40(4): 445-457. [34] GOGULYA M F, BRAZHNIKOV M A. Effect of the dispersity of the components of explosive materials on the detonation velocity and sensitivity to mechanical action[J]. Russian Journal of Physical Chemistry B, 2010, 4(2):286-303. [35] GREBENKIN K F. Comparative analysis of physical mechanisms of detonation initiation in HMX and in a low-sensitive explosive (TATB) [J]. Combustion, Explosion, and Shock Waves, 2009, 45(1): 78-87. [36] YILMAZ G A, SEN D, KAYA Z T, et al.. Effect of inert plasticizers on mechanical, thermal, and sensitivity properties of polyurethane-based plastic bonded explosives [J]. Journal of Applied Polymer Science, 2014, 131(20): 1-8. [37] ZHANG Z Y. Studies on high pressure reaction rate of PBX-9404 [J]. Explosion and Shock Waves, 1999, 19(4): 360-364.
|