[1] |
朱家辉, 苏维均, 于重重, 等. 基于RGB图像的坦克损伤目标三维检测研究与应用[J]. 火力与指挥控制, 2022, 47(4):169-175.
|
|
ZHU J H, SHU W J, YU C C, et al. Research and application of tank damage target 3D detection based on RGB image[J]. Fire Control and Command Control, 2022, 47(4):169-175. (in Chinese)
|
[2] |
童雪东. 面向无人作战车辆的图像敏感目标检测技术的研究与实现[D]. 南京: 南京理工大学, 2019.
|
|
TONG X D. Research and implementation of image sensitive target detection technology for unmanned combat vehicles[D]. Nanjing: Nanjing University of Science and Technology, 2019. (in Chinese)
|
[3] |
褚文杰. 基于YOLOv5的坦克装甲车辆目标检测关键技术的研究[D]. 北京: 北京交通大学, 2022.
|
|
CHU W.J. Research on key technologies for tank armored vehicle target detection based on YOLOv5[D]. Beijing: Beijing Jiaotong University, 2022. (in Chinese)
|
[4] |
DU X L, SONG L Q, LÜ Y N, et al. A lightweight military target detection algorithm based on improved YOLOv5[J]. Electronics, 2022, 1120: 3263.
|
[5] |
GE Z, LIU S T, WANG F, et al. YOLOX: exceeding YOLO series in 2021: arXiv:2107.08430[R]. Ithaca,NY, US: Cornell University, 2021:2107.08430.
|
[6] |
GUO M H. Visual attention network[J]. Computational Visual Media, 2023, 9(4): 733-752.
|
[7] |
GEVORGYAN Z SIoU loss: more powerful learning for bounding box regression:arXiv:2205.12740[R].Ithaca,NY,US: Cornell University, 2022:2205.12740.
|
[8] |
ZHAO F Y, ZHANG J W, ZHANG G Q. FFEDet:fine-grained feature enhancement for small object detection[J]. Remote Sensing, 2024, 16(11):143-146.
|
[9] |
LÜ Z L, AN W. HDR-YOLO:adaptive object detection in haze, dark, and rain scenes based on YOLO[J]. International Journal of Pattern Recognition and Artificial Intelligence, 2024, 38(5):278-284.
|
[10] |
ZENG Y Y, ZHOU Z H, YU Y. Study of YOLOX target detection method based on stand-alone self-attention[J]. Academic Journal of Computing & Information Science, 2022, 5(12):572-580.
|
[11] |
SUN Y, ZHENG W X, DU X, et al. Underwater small target detection based on YOLOX combined with mobileViT and double coordinate attention[J]. Journal of Marine Science and Engineering, 2023, 11(6):1129-1133.
|
[12] |
YANG M D, YUAN W H, XU G J. YOLOX target detection model can identify and classify several types of tea buds with similar characteristics[J]. Scientific Reports, 2024, 14(1): 2855-2855.
doi: 10.1038/s41598-024-53498-y
pmid: 38310143
|
[13] |
ZHANG S Y. Fusion network for small target detection based on YOLO and attention mechanism[J]. Optoelectronics Letters, 2024, 20(6):372-378.
|
[14] |
LI S, TAO T, ZHANG Y, et al. YOLOv7-CS: a YOLO v7-based model for lightweight bayberry target detection count[J]. Agronomy, 2023, 13(12):399-405.
|
[15] |
TIAN Y N, WANG S H, LI E, et al. MD-YOLO:multi-scale dense YOLO for small target pest detection[J]. Computers and Electronics in Agriculture, 2023, 13(2):89-94.
|
[16] |
CHANG Y L, LI D, GAO Y L, et al. An improved YOLO model for UAV fuzzy small target image ietection[J]. Applied Sciences, 2023, 13(9):632-639.
|
[17] |
ZHOU Z H, YU X G, WANG X K. Object detection in drone video based on recurrent motion attention[J]. Pattern Recognition Letters, 2024,18356-63.
|
[18] |
ZHANG H L. AC-YOLOv5:an improved algorithm for small target face detection[J]. EURASIP Journal on Image and Video Processing, 2024, 2024(1):327-331.
|
[19] |
TOIVOLA J, MOILANEN S, TERVOKOSKI J, et al. Remote intelligent perception system for multi-object detection[J]. Frontiers in Neurorobotics, 2024, 18(6):1398703-1398703.
|
[20] |
DUAN K W, BAI S, XIE L X, et al. CenterNet++ for object detection[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2024, 46(5):3509-3521.
|