[1] POWERS C, MELLINGER D, KUSHLEYEV A, et al. Influence of aerodynamics and proximity effects in quadrotor flight[M]∥DESAI J P, DUDEK G, KHATIB O, et al. Experimental robotics[C]∥Proceedings of the 13th International Symposium on Experimental Robotics. Heidelberg,Germany:Springer International Publishing, 2013: 289-302. [2] MICHAEL N, MELLINGER D, LINDSEY Q, et al. The GRASP multiple micro-UAV testbed[J]. IEEE Robotics & Automation Magazine, 2010, 17(3):56-65. [3] KUSHLEYEV A, MELLINGER D, POWERS C, et al. Towards a swarm of agile micro quadrotors[J]. Autonomous Robots, 2013, 35(4):287-300. [4] PIEDMONTE M M M M D. Hybrid control for aggressive maneuvering of autonomous aerial vehicles[C]∥Proceedings of the IEEE 19th Digital Avionics Systems Conference. Philadelphia, PA, US: IEEE, 2000. [5] BRISTEAU P J, MARTIN P, SALAN E, et al. The role of propeller aerodynamics in the model of a quadrotor UAV[C]∥Proceedigs of 2009 European Control Conference. Budapest, Hungary: IEEE, 2010:683-688. [6] ALVISSALIM M S, ZAMAN B, HAFIZH Z A, et al. Swarm quadrotor robots for telecommunication network coverage area expansion in disaster area[C]∥Proceedings of SICE Annual Conference. Akita, Japan: IEEE, 2012:2256-2261. [7] HWANG J Y, JUNG M K, KWON O J. Numerical study of aerodynamic performance of a multirotor unmanned-aerial-vehicle configuration[J]. Journal of Aircraft, 2014, 52(3):839-846. [8] BARCELOS D, KOLAEI A, BRAMESFELD G. Aerodynamic interactions of quadrotor configurations[J]. Journal of Aircraft, 2020,57(6): 1074. [9] LUO J F, ZHU L R, YAN G R. Novel quadrotor forward-flight model based on wake interference[J]. AIAA Journal, 2015, 53(12): 3522-3533. [10] LEISHMAN J G. Principles of helicopter aerodynamics[M]∥LEISHMANJ G. Fundamentals of Rotor Aerodynamics. Cambridge, UK: Cambridge University Press, 2006: 94. [11] FU W J, LI J, WANG H J. Numerical simulation of propeller slipstream effect on a propeller-driven unmanned aerial vehicle[J]. Procedia Engineering, 2012, 31:150-155. [12] MISIOROWSKI M, GANDHI F, OBERAI A A. Computational study on rotor interactional effects for a quadcopter in edgewise flight[J]. AIAA Journal, 2019, 57(12):5309-5319. [13] 许和勇, 叶正寅, 王刚, 等. 旋翼/机身干扰非定常流场数值模拟[J]. 空气动力学学报, 2010, 28(2):162-167. XU H Y, YE Z Y, WANG G, et al. Numerical simulation of unsteady rotor-fuselage aerodynamic interaction[J]. Acta Aerodynamic Sinica, 2010, 28(2):162-167. (in Chinese) [14] 张铮, 陈仁良. 倾转旋翼机旋翼/机翼气动干扰理论与试验[J]. 航空学报, 2017, 38(3): 26-34. ZHANG Z, CHEN R L. Theory and test of rotor/wing aero-interaction in tilt-rotor aircraft[J]. Acta Aeronautica et Astronautica Sinica, 2017, 38(3): 26-34. (in Chinese) [15] 史文博, 李杰. 螺旋桨安装效应对无人机气动特性影响[J]. 航空动力学报, 2020, 35(3): 611-619. SHI W B, LI J. Impacts of propeller installation effect on aerodynamic performances for UAV[J]. Journal of Aerospace Power, 2020, 35(3): 611-619. (in Chinese) [16] WITKOWSKI D, LEE A K H, SULLIVAN J P. Aerodynamic interaction between propellers and wings[J]. Journal of Aircraft, 1988, 26(9):829-836 [17] 范中允, 周洲, 祝小平, 等. 翼上螺旋桨构型耦合气动特性及翼型优化设计[J]. 航空学报, 2019, 40(8): 122777. FAN Z Y, ZHOU Z, ZHU X P, et al. Coupled aerodynamic analysis and airfoil optimization design for over-wing propeller configuration[J]. Acta Aeronautica et Astronautica Sinica, 2019, 40(8): 122777. (in Chinese) [18] ALLEN C B. Parallel flow-solver and mesh motion scheme for forward flight rotor simulation[C]∥Proceedings of the 24th Applied Aerodynamics Conference. San Francisco, CA, US: AIAA, 2006. [19] PARK Y M, KWON O J. Simulation of unsteady rotor flow field using unstructured adaptive sliding meshes[J]. Journal of the American Helicopter Society, 2004, 49(4):391-400. [20] NIEMIEC R, GANDHI F. Effect of elastic blade deformation on trim and vibratory loads of a quadcopter[C]∥Proceedings of the 73rd Annual Forum of the American Helicopter Society. Fort Worth, TX, US: American Helicopter Society International, 2017. [21] MISIOROWSKI M, GANDHI F, ANUSONTI-INTHRA P. Computational analysis of rotor-blown-wing for electric rotorcraft applications[J]. AIAA Journal, 2020, 58(7): J058851. [22] KOLAEI A, BARCELOS D, BRAMESFELD G. Experimental analysis of a small-scale rotor at various inflow angles[J]. International Journal of Aerospace Engineering, 2018, 2018: 2560370. [23] 雷瑶, 纪玉霞. 小型共轴旋翼自然来流下的抗风扰气动特性分析[J]. 兵工学报, 2018, 39(6): 1225-1232. LEI Y, JI Y X. Aerodynamic characteristics of small coaxial rotor considering the wind gust[J]. Acta Armamentarii, 2018, 39(6): 1225-1232. (in Chinese)
|