[1] 姜毅, 史少岩, 牛钰森, 等. 发射气体动力学[M]. 北京:北京理工大学出版社, 2015: 317-463. JIANG Y, SHI S Y, NIU Y S, et al. Jet gas dynamics [M]. Beijing: Beijing Institute of Technology Press, 2015: 317-463. (in Chinese) [2] 王飞, 杨树兴, 徐勇. W型地下井发射环境数值模拟与分析[J]. 固体火箭技术, 2007, 30(6): 466-469. WANG F, YANG S X, XU Y. Numerical simulation and analysis on W-type silo launching environment [J]. Journal of Solid Rocket Technology, 2007, 30(6): 466-469. (in Chinese) [3] 周笑飞. 井下发射过程燃气射流流场研究[D]. 北京: 北京理工大学, 2015: 86-94. ZHOU X F. Study on the silo jet flow field during the launching [D]. Beijing: Beijing Institute of Technology, 2015: 86-94. (in Chinese) [4] 谢政, 谢建, 常正阳, 等. 火箭发射燃气流二次燃烧数值模拟[J]. 宇航学报, 2017, 38(5): 542-549. XIE Z, XIE J, CHANG Z Y, et al. Numerical research on jet secondary combustion of rocket launch [J]. Journal of Astronautics, 2017, 38(5): 542-549. (in Chinese) [5] 谢建, 谢政, 常正阳, 等. 火箭点火压力脉冲形成机理和影响因子分析[J]. 推进技术, 2018, 39(1): 152-159. XIE J, XIE Z, CHANG Z Y, et al. Generation mechanism and influence factors analysis of rocket ignition pressure pulse [J]. Journal of Propulsion Technology, 2018, 39(1): 152-159 (in Chinese) [6] 谢建, 权辉, 谢政. 一种火箭发射场坪流场的环形线汇描述方法[J]. 宇航学报, 2018, 39(12):91-97. XIE J, QUAN H, XIE Z. A method for calculating flow field of launch site by using the ring-sink model [J]. Journal of Astronautics, 2018, 39(12):91-97. (in Chinese) [7] GOHIL T B, SAHA A K, MURALIDHAR K. Numerical study of instability mechanisms in a circular jet at low Reynolds numbers [J]. Computers & Fluids, 2012, 64: 1-18. [8] XU B P, WEB J X, VOLKOV K N. Large-eddy simulation of vortical structures in a forced plane impinging jet[J].European Journal of Mechanics-B/Fluids, 2013, 42: 104-120. [9] 冯博声, 薛晓春. 边界形状对4股燃气射流扩展稳定性影响的数值模拟[J]. 兵工学报, 2018, 39(9): 1692-1700. FENG B S, XUE X C. Numerical simulation of the influence of boundary shape on the expansion stability of four combustion-gas jets [J]. Acta Armamentarii, 2018, 39(9): 1692-1700.(in Chinese)
[10] WEIGAND B, SPRING S. Multiple jet impingement-a review [J]. Heat Transfer Research, 2011, 42(2): 101-142. [11] MOHAMMADPOUR J, ZOLFAGHRIAN M M, MUJUMDAR A S, et al. Heat transfer under composite arrangement of pulsed and steady turbulent submerged multiple jets impinging on a flat surface [J]. International Journal of Thermal Sciences, 2014, 86: 139-147. [12] PAKHOMOV M A, TEREKHOV V I. Numerical study of fluid flow and heat transfer characteristics in an intermittent turbulent impinging round jet[J].International Journal of Thermal Sciences, 2015, 87: 85-93. [13] 李彦静, 陈科, 胡天群, 等. 高密度弗劳德数热浮力特性实验[J]. 华中科技大学学报(自然科学版), 2017, 45(12): 91-95. LI Y J, CHEN K, HU T Q, et al. Experiments on characteristics of thermal buoyant jets with high density Froude numbers [J]. Journal of Huazhong University of Science and Technology (Natural Science Edition), 2017, 45(12): 91-95. (in Chinese) [14] 马健. 纯射流在非恒定横流中的流动特性研究[D]. 杭州:浙江大学,2006: 118-138. MA J. Flow behavior of pure jet in unsteady crossflow [D]. Hangzhou: Zhejiang University, 2006: 118-138. (in Chinese) [15] 盛刚浩, 张海滨, 赵中闯, 等. 横向气流中环状流射流液膜的破碎与雾化[J]. 中国科学院大学学报, 2017, 34(2): 160-165. SHENG G H, ZHANG H B, ZHAO Z C, et al. Breakup and atomization of annular flow jet in crossflow [J]. Journal of University of Chinese Academy of Science, 2017, 34(2): 160-165. (in Chinese) [16] 潘衍强. 横向气流中射流轴线的弯曲[J]. 华中工学院学报, 1980, 8(3): 171- 176. PAN Y Q. The jet path in a cross stream [J]. Journal of Huazhong University of Science and Technology, 1980, 8(3): 171- 176. (in Chinese) [17] 平浚. 射流理论基础及应用[M]. 北京:宇航出版社, 1995: 212-218. PING J. Basic theories and applications of jet [M]. Beijing: China Astronautic Publishing House, 1995: 212-218. (in Chinese) [18] 马梓然,徐敏义,栾剑,等. 矩形长宽比对射流中心线湍流特性的影响[J]. 实验流体力学, 2017, 39(1): 54-61. MA Z R, XU M Y, LUAN J, et al. Statistical properties of turbulent free jets issuing from rectangular nozzles with different aspect ratios [J]. Journal of Experiments in Fluid Mechanics, 2017, 39(1): 54-61. (in Chinese) [19] DI VENUTA I, BOGHI A, PETRACCI I, et al. Flow evolution and mass transfer in a turbulent rectangular free jet of air with small laminar Schmidt number [J]. International Communications in Heat and Mass Transfer, 2019, 107: 44-54. [20] 刘沛清. 自由紊动射流理论[M]. 北京:北京航空航天大学出版社, 2008: 8-13, 152. LIU P Q. Theory of free turbulent jet [M]. Beijing: Beihang University Press, 2008: 8-13, 152. (in Chinese) [21] 谢象春. 湍流射流理论与计算[M]. 北京:科学出版社, 1975: 125-177. XIE X C. Theory and calculation of turbulent jet [M]. Beijing: Science Press, 1975: 125-177. (in Chinese) [22] 张强, 杨永. 不同湍流模型在射流推力矢量喷管数值模拟中的比较分析研究[J]. 西北工业大学学报, 2012, 30(1): 62-67. ZHANG Q, YANG Y. Some comparative study of turbulence models for fluidic thrust vectoring nozzle [J]. Journal of Northwestern Polytechnical University, 2012, 30(1): 62-67. (in Chinese) [23] 邵艳. 高超声速低温喷管横向射流混合反应机理的数值模拟和实验研究[D]. 长沙: 国防科学技术大学, 2011: 24-47. SHAO Y. Numerical simulation and experimental investigation of the mixing and reacting mechanisms associated with the transverse injection in HYLTE nozzle [D]. Changsha: National University of Defense Technology, 2011: 24-47. (in Chinese) [24] ANDERSON J D. 计算流体力学基础及其应用 [M]. 吴颂平, 刘赵淼, 译. 北京: 机械工业出版社, 2007: 341-352. ANDERSON J D. Computational fluid dynamics [M]. WU S P, LIU Z M, translated. Beijing: China Machine Press, 2007: 341-352. (in Chinese)
第41卷第6期2020 年6月 兵工学报ACTA ARMAMENTARII Vol.41No.6Jun.2020
|