[1] 王英立. 烟幕全遮蔽能力的理论与实验研究[D]. 哈尔滨:哈尔滨工业大学, 2008:1-9,21-25. WANG Y L. Theory and experimental study on the smoke total obscuring power[D]. Harbin: Harbin Institute of Technology, 2008: 1-9,21-25.(in Chinese) [2] 曾照凯, 朱东升, 郭潇迪, 等. 基于红外遮蔽的地面烟幕防空阵地部署模型研究[J]. 兵工学报, 2019, 40(6):1244-1251. ZENG Z K, ZHU D S, GUO X D, et al. Research on anti-aircraft smoke equipment position disposition model based on infrared shielding[J]. Acta Armamentarii, 2019, 40(6):1244-1251. (in Chinese) [3] 姚禄玖, 高钧麟, 肖凯涛, 等. 烟幕理论与测试技术[M]. 北京:国防工业出版社, 2004:1-7,42-43,97-104,147-152. YAO L J, GAO J L, XIAO K T, et al. Theory and testing technique of smoke[M]. Beijing: National Defense Industry Press, 2004:1-7,42-43,97-104,147-152.(in Chinese) [4] 许兴春, 高欣宝, 李天鹏, 等. 烟幕初始云团半径变化规律理论模型及实验研究[J]. 爆炸与冲击, 2016, 36(2):183-188. XU X C, GAO X B, LI T P, et al. Theoretical model and experiment of radius variation of initial smoke cloud[J]. Explosion and Shock Waves, 2016, 36(2):183-188.(in Chinese) [5] 朱晨光, 潘功配, 关华, 等. 烟幕云团形成初期的流动规律研究[J]. 含能材料, 2007, 15(5):540-543. ZHU C G, PAN G P, GUAN H, et al. Initial flow ability of smoke cloud forming [J]. Chinese Journal of Energetic Materials, 2007, 15(5):540-543.(in Chinese) [6] 陈宁, 潘功配, 陈厚和, 等. 真空环境中烟幕云团形成阶段的膨胀模型[J]. 火工品, 2006(1):1-5. CHEN N, PAN G P, CHEN H H, et al. Expansive model of smoke cloud forming course in vacuum [J]. Initiators & Pyrotechnics, 2006(1):1-5.(in Chinese) [7] 陈浩, 高欣宝, 李天鹏, 等. 烟幕初始云团最大半径数值模拟[J]. 含能材料, 2018, 26(10):18-25. CHEN H, GAO X B, LI T P, et al. Numerical simulation of maximum radius of initial cloud cluster of smoke screen[J]. Chinese Journal of Energetic Materials, 2018, 26(10):18-25. (in Chinese) [8] 张楠, 张科, 王红梅, 等. 一种红外烟幕三维建模仿真方法[J]. 电光与控制, 2014,21(6): 48-51. ZHANG N, ZHANG K, WANG H M, et al. A simulation method for building 3D model of infrared smokescreen[J]. Electronics Optics & Control, 2014,21(6): 48-51.(in Chinese) [9] 花超, 廖守亿, 张作宇, 等. 烟幕对红外导引头干扰效果仿真研究[J]. 激光与红外, 2019,49(2):217-221. HUA C,LIAO S Y, ZHANG Z Y, et al. Simulation research on jamming efficiency about the smoke screen against infrared seeker[J]. Laser & Infrared, 2019,49(2):217-221. (in Chinese) [10] 邱继进, 赵晓哲. 红外烟幕干扰效果的计算与模拟[J]. 电光与控制, 2006,13(4): 31-33. QIU J J, ZHAO X Z. Jamming effect of smoke screen on infrared-guided anti-ship missile[J]. Electronics Optics & Control, 2006,13(4): 31-33.(in Chinese) [11] PULLEN J, BORIS J P, YOUNG T, et al. A comparison of contaminant plume statistics from a Gaussian puff and urban CFD model for two large cities[J]. Atmospheric Environment, 2005, 39(6):1049-1068. [12] 徐路程, 肖凯涛. 基于CFD方法的红外烟幕干扰性能研究[J]. 红外技术, 2015,37(4): 337-341. XU L C, XIAO K T. CFD-based study on countermeasure performance of anti-infrared smoke screen[J]. Infrared Technology, 2015,37(4): 337-341.(in Chinese) [13] 朱晨光. 提高赤磷烟幕抗红外效能研究[D]. 南京:南京理工大学, 2005:6-12. ZHU C G. Research on improving anti-infrared efficiency of red phosphorus smoke[D]. Nanjing: Nanjing University of Science and Technology, 2005:6-12.(in Chinese) [14] 王玄玉. 烟火技术基础[M]. 北京:清华大学出版社, 2017:199-200. WANG X Y. Foundations of pyrotechnics[M]. Beijing: Tsinghua University Press, 2017:199-200. (in Chinese) [15] 陈兵, 李澄俊. 发烟弹扩爆过程及其扩散影响因素分析[J]. 火工品, 2005(3):5-9. CHEN B,LI C J. Analysis on explosion process of smoke munitions and factors influence on the smoke diffusion[J]. Initiators & Pyrotechnics, 2005(3):5-9.(in Chinese) [16] 吴清松. 计算热物理引论[M]. 合肥:中国科学技术大学出版社, 2009:201-203. WU Q S. Introduction to computational thermophysics [M]. Hefei: Press of University of Science and Technology of China, 2009:201-203.(in Chinese) [17] RICHARDS P J, NORRIS S E. Appropriate boundary conditions for computational wind engineering models revisited[J]. Journal of Wind Engineering & Industrial Aerodynamics, 2011, 99(4): 257-266. [18] BLOCKEN B, STARHOPOULOS T, CARMELIET J. CFD simulation of the atmospheric boundary layer: wall function problems [J]. Atmospheric Environment, 2007, 41(2):238-252. [19] DEAN J A. 兰氏化学手册[M]. 北京:科学出版社, 1991:9.1- 9.25. DEAN J A. Handbook of chemistry[M]. Beijing: Science Press, 1991:9.1-9.25. (in Chinese) [20] ANSYS, Inc.. ANSYS FLUENT 12.0 theory guide[M]. US: ANSYS, Inc., 2009: 15-2-15-4. [21] 王玄玉. 烟幕对10.6 μm激光的衰减规律及应用计算研究[D]. 南京:南京理工大学, 2007:32-36. WANG X Y. Attenuation and applied calculation of smoke to 10.6 μm laser emission[D]. Nanjing: Nanjing University of Science and Technology, 2007:32-36.(in Chinese) [22] 李澄俊. 统一表征发烟剂对可见光和红外的遮蔽能力[J]. 火工品, 2001(2):8-10. LI C J. Obscuring power of smoking composition used for visible light and infrared wave[J]. Initiators & Pyrotechnics, 2001(2):8-10. (in Chinese) [23] 裴正学, 刘力军, 窦春玉, 等. 野外烟幕对可见光有效遮蔽面积试验方法:GJB6224—2008[S]. 北京:国防科学技术工业委员会, 2008. PEI Z X, LIU L J, DOU C Y, et al. Test method of effective obscuring area for field smoke screen against the visible light: GJB6224—2008[S]. Beijing: Commission of Science, Techno- logy and Industry for National Defense, 2008. (in Chinese) [24] 胡二邦, 陈家宜. 核电厂大气扩散及其环境影响评价[M]. 北京:原子能出版社, 1999. HU E B, CHEN J Y. Atmospheric diffusion and environmental impact assessment of nuclear power plant [M]. Beijing: Atomic Energy Press, 1999. (in Chinese)
第41卷第7期2020 年7月 兵工学报ACTA ARMAMENTARII Vol.41No.7Jul.2020
|