[1] ZHANG C L, HE Y G, YUAN L F, et al. Analog circuit incipi-ent fault diagnosis method using DBN based features extraction[J]. IEEE Access, 2018, 6(5): 23053-23064. [2] BINU D, KARIYAPPA B S. RideNN: a new rider optimization algorithm-based neural network for fault diagnosis in analog circuits[J]. IEEE Transactions on Instrumentation and Measurement, 2019, 68(1):2-26. [3] BINU D, KARIYAPPA B S. A survey on fault diagnosis of analog circuits: Taxonomy and state of the art[J]. AEU-International Journal of Electronics and Communications, 2017, 73:68-83. [4] TANG X F, XU A Q, LI R F, et al. Simulation-based diagnostic model for automatic testability analysis of analog circuits[J]. IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems, 2018,37(7): 1483-1493. [5] LUO H, LU W, WANG Y R, et al. A new test point selection method for analog continuous parameter fault[J]. Journal of Electronic Testing: Theory & Applications, 2017, 33(3):339-352. [6] TANG X F, XU A Q, NIU S C. KKCV-GA-based method for optimal analog test point selection[J]. IEEE Transactions on Instrumentation and Measurement, 2017, 66(1):24-32. [7] KUMAR A, SINGH A P. Fuzzy classifier for fault diagnosis in analog electronic circuits[J]. ISA Transactions, 2013, 52(6):816-824. [8] LITOVSKI V, ANDREJEVIAC'U2 M, ZWOLINSKI M. Analogue electronic circuit diagnosis based on ANNs[J]. Microelectronics Reliability, 2006, 46(8):1382-1391. [9] 袁莉芬, 孙业胜, 何怡刚, 等. 基于小波包优选的模拟电路故障特征提取方法[J]. 电工技术学报, 2018, 33(1):158-165. YUAN L F, SUN Y S, HE Y G, et al. Fault feature extraction method for analog circuit based on preferred wavelet packet [J]. Transactions of China Electrotechnical Society, 2018, 33(1): 158- 165. (in Chinese) [10] LIU Z B, LIU T M, HAN J W, et al. Signal model-based fault coding for diagnostics and prognostics of analog electronic circuits[J]. IEEE Transactions on Industrial Electronics, 2017, 64(1): 605-614. [11] XIE T, HE Y G. Fault diagnosis of analog circuit based on high-order cumulants and information fusion[J]. Journal of Electronic Testing: Theory & Applications, 2014, 30(5):505-514. [12] YANG H H, MENG C, WANG C. Data-driven feature extraction for analog circuit fault diagnosis using 1-D convolutional neural network [J]. IEEE Access, 2020, 8(1): 18305-18315. [13] LIU Z B, JIA Z, VONG C M, et al. Capturing high-discriminative fault features for electronics-rich analog system via deep learning[J]. IEEE Transactions on Industrial Informatics, 2017, 13(3):1213-1226. [14] XU G W, LIU M, JIANG Z F, et al. Online fault diagnosis method based on transfer convolutional neural networks[J]. IEEE Transactions on Instrumentation and Measurement, 2020, 69(2):509-520. [15] 廖剑, 史贤俊, 周绍磊, 等. 基于局部图嵌入加权罚SVM的模拟电路故障诊断方法[J]. 电工技术学报, 2016, 31(4): 28-35. LIAO J, SHI X J, ZHOU S L, et al. Analog circuit fault diagnosis based on local graph embedding weighted-penalty SVM[J]. Transactions of China Electrotechnical Society, 2016, 31(4): 28- 35. (in Chinese) [16] 张伟, 刘星, 许爱强, 等. lp范数约束的模拟电路3层多核故障诊断模型[J]. 兵工学报, 2018, 39(7):1352-1363. ZHANG W, LIU X, XU A Q, et al. Three-layer multiple kernel fault diagnosis model with lp-norm constraint for analog circuit[J]. Acta Armamentarii, 2018, 39(7):1352-1363. (in Chinese) [17] 高明哲,许爱强,唐小峰, 等.基于多核多分类相关向量机的模拟电路故障诊断方法[J].自动化学报,2019,45(2):434-444. GAO M Z, XU A Q, TANG X F, et al. Analog circuit diagnostic method based on multi-kernel learning multiclass relevance vector machine[J]. Acta Automatica Sinica, 2019,45(2):434-444. (in Chinese) [18] LIYANAARACHCHI L C K, ZHOU H M, HUANG G B. Representational learning with ELMs for big data[J]. IEEE Intelligent Systems,2013,28(6): 31-34. [19] KASUN L C, YANG Y, HUANG G B, et al. Dimension reduction with extreme learning machine[J]. IEEE Transactions on Image Processing, 2016, 25(8):3906-3918. [20] TANG J X, DENG C W, HUANG G B. Extreme learning machine for multilayer perception[J]. IEEE Transactions on Neural Networks and Learning Systems, 2016,27(4):809-821. [21] 逄珊, 杨欣毅, 张勇, 等. 应用深度核极限学习机的航空发动机部件故障诊断[J]. 推进技术, 2017,38(11): 2613-2621. PANG S, YANG X Y, ZHANG Y, et al. Application of deep kernel extreme learning machinein aero engine components fault diagnosis[J]. Journal of Propulsion Technology, 2017,38(11): 2613-2621. (in Chinese) [22] TANG X F, XU A Q. Practical analog circuit diagnosis based on fault features with minimum ambiguities[J]. Journal of Electro-nic Testing, 2016, 32(1):83-95. [23] CHEN X, WANG W, CAO W, et al. Gaussian-kernel-based adaptive critic design using two-phase value iteration[J]. Information Sciences, 2019, 482(6): 139-155. [24] LAGARIAS J C, REEDS J A, WRIGHT M H, et al. Convergence properties of the Nelder-Mead simplex method in low dimensions[J]. SIAM Journal on Optimization: A Publication of the Society for Industrial & Applied Mathematics, 2006, 9(1):112-147. [25] IOSIFIDIS A, TEFAS A, PITAS I. Graph embedded extreme learning machine[J]. IEEE Transactions on Cybernetics, 2016,46(1):311-324. [26] PSORAKIS I, DAMOULAS T, GIROLAMI M A. Multiclass relevance vector machines: sparsity and accuracy[J]. IEEE Tran-sactions on Neural Networks, 2010, 21(10):1588-1598.
|