[1] 邓海, 沈飞, 梁争峰, 等. 不同约束条件下B炸药的慢烤响应特性[J]. 火炸药学报, 2018, 41(5):49-54. DENG H, SHEN F, LIANG Z F, et al. Slow cook-off response characteristics of composition B under different constraints[J]. Chinese Journal of Explosives & Propellants, 2018, 41(5):49-54. (in Chinese) [2] 许丽娟, 曹雄, 冯翼鲲, 等. 含能材料CL-20的热安全性测试分析[J]. 安全与环境学报, 2018, 18(1):74-78. XU L J, CAO X, FENG Y K, et al. Test and analysis for the thermal safety of the energetic material known as CL-20[J]. Journal of Safety and Environment, 2018, 18(1):74-78. (in Chinese) [3] 李萍, 敖登高娃, 李纯志, 等. 龙骨状纳米结构TATB的构筑与热分解动力学研究[J]. 含能材料, 2019,27(2):137-143. LI P, AODENG G W, LI C Z, et al. Construction and thermal decomposition kinetics of the keel-like nanostructure TATB[J]. Chinese Journal of Energetic Materials, 2019,27(2):137-143. (in Chinese) [4] OWUSU D, KIM S H, CHAE J, et al. CFD cook-off simulation and thermal decomposition of confined high energetic material[J]. Propellants, Explosives, Pyrotechnics, 2015, 40(5):699-705. [5] AYDEMIR E, ULAS A, SERIN N. Thermal decomposition and ignition of PBXN-110 plastic-bonded explosive[J]. Propellants, Explosives, Pyrotechnics, 2012,37(3):308-315. [6] 秦沛文, 赵孝彬, 李军, 等. NEPE推进剂热安全性的尺寸效应[J]. 火炸药学报, 2016, 39(1): 84-88,94. QIN P W, ZHAO X B, LI J, et al. Size effects of thermal safety of NEPE propellant[J]. Chinese Journal of Explosives & Propellants, 2016, 39(1): 84-88,94. (in Chinese) [7] YANG H W, YU Y G, YE R, et al. Cook-off test and numerical simulation of AP/HTPB composite solid propellant[J]. Journal of Loss Prevention in the Process Industries, 2015, 40:1-9. [8] LI W F, YU Y G, YE R. Effects of charge size on slow cook-off characteristics of AP/HTPB composite propellant in base bleed unit[J]. Propellants, Explosives, Pyrotechnics, 2018, 43(4):404-412. [9] 张林军, 杜姣姣, 栾洁玉, 等. 热老化对RDX基含铝压装炸药装药发射安全性的影响[J]. 含能材料, 2018, 26(2): 156-160. ZHANG L J, DU J J, LUAN J Y, et al. Effect of thermal-aging on launching safety of RDX-based aluminized and pressed explosive charge[J]. Chinese Journal of Energetic Materials, 2018, 26(2): 156-160. (in Chinese)
[10] 王凯, 王俊林, 徐东, 等. 3-硝基-1,2,4-三唑-5-酮自催化分解反应特性与热安全性研究[J]. 兵工学报, 2018, 39(9): 1727-1732. WANG K, WANG J L, XU D, et al. Research on autocatalytic thermal decomposition properties and thermal safety of NTO[J]. Acta Armamentarii, 2018, 39(9): 1727-1732. (in Chinese) [11] 刘静, 余永刚. 模块装药快速烤燃特性的数值预测[J]. 含能材料, 2019, 27(5):25-30. LIU J, YU Y G. Numerical prediction of fast cook-off characteristic for modular charges[J]. Chinese Journal of Energetic Materials, 2019, 27(5):25-30. (in Chinese) [12] 刘伟, 范爱武, 黄晓明. 多孔介质传热传质理论与应用[M]. 北京:科学出版社, 2006. LIU W, FAN A W, HUANG X M. Theory and application of heat and mass transfer in porous media[M]. Beijing:Science Press, 2006. (in Chinese) [13] 陈桂东, 周彦煌. 火炮身管报警温度的确定[J]. 兵工学报, 2008, 29(1):19-22. CHEN G D, ZHOU Y H. Methods to ascertain the alert temperature of gun tube[J]. Acta Armamentarii, 2008, 29(1):19-22. (in Chinese) [14] 胡祖荣, 郭鹏江, 宋纪蓉, 等. 用非等温DSC估算硝化棉热爆炸的临界温升速率[J].火炸药学报, 2003, 26(2):53-57.
HU Z R, GUO P J, SONG J R, et al. estimation of the critical increase temperature rate of thermal explosion of nitrocellulose using non-isothermal DSC[J]. Chinese Journal of Explosives & Propellants, 2003, 26(2):53-57. (in Chinese) [15] 姚二岗, 胡荣祖, 赵凤起, 等. 用DSC曲线数据估算硝化棉的CnB和表观经验级数自催化分解反应热爆炸临界温升速率[J]. 火炸药学报, 2013, 36(5):72-76. YAO E G, HU R Z, ZHAO F Q, et al. Estimation of the critical rate of temperature rise for thermal explosion of CnB and apparent empiric-order autocatalytic decomposing reaction of nitrocellulose from DSC curves[J]. Chinese Journal of Explosives & Propellants, 2013, 36(5): 72-76. (in Chinese) [16] 宁斌科, 刘蓉. 硝化棉一级自催化分解反应动力学参数数值模拟[J]. 含能材料, 1999, 7(4):162-165. NING B K, LIU R. Numerical simulation of kinetic parameters of the first-order autocatalytic decomposition of NC[J]. Chinese Journal of Energetic Materials, 1999, 7(4):162-165. (in Chinese) [17] 刘子如. 含能材料热分析[M]. 北京:国防工业出版社,2008. LIU Z R. Thermal analyses for energetic materials[M]. Beijing:National Defense Industry Press,2008. (in Chinese)
第41卷 第2期2020 年2月兵工学报ACTA ARMAMENTARIIVol.41No.2Feb.2020
|