[1] MALVAR L J, ROSS C A. Review of strain rate effects for concrete in tension[J]. ACI Materials Journal, 1998, 95(6): 735-739. [2] EIBL J, SCHMIDT-HURTIENNE B. Strain-rate-sensitive constitutive law for concrete[J]. Journal of Engineering Mechanics, 1999, 125(12):1411-1420. [3] CUSATIS G. Strain-rate effects on concrete behavior[J]. International Journal of Impact Engineering, 2011, 38(4):162-170. [4] OZBOLT J, SHARMA A, IRHAN B, et al. Tensile behavior of concrete under high loading rates[J]. International Journal of Impact Engineering, 2014, 69:55-68. [5] LI Q M, MENG H. About the dynamic strength enhancement of concrete-like materials in a split Hopkinson pressure bar test[J]. International Journal of Solids & Structures, 2003, 40(2):343-360. [6] LU Y B, LI Q M. About the dynamic uniaxial tensile strength of concrete-like materials[J]. International Journal of Impact Engineering, 2011, 38(4):171-180. [7] ROSSI P, VAN M J G M, TOUTLEMONDE F, et al. Effect of loading rate on the strength of concrete subjected to uniaxial tension[J]. Materials & Structures, 1994, 27(5):260-264. [8] ZIELINSKI A J, REINHARDT H W, KRMELING H A. Experiments on concrete under uniaxial impact tensile loading[J]. Matériaux et Construction, 1981, 14(2): 103-112. [9] ASPRONE D, CADONI E, PROTA A. Experimental analysis on tensile dynamic behavior of existing concrete under high strain rates[J]. ACI Structural Journal, 2009, 106(1):106-113.
[10] KLEPACZKO J R, BRARA A. An experimental method for dynamic tensile testing of concrete by spalling[J]. International Journal of Impact Engineering, 2001, 25(4):387-409. [11] SCHULER H, MAYRHOFER C, THOMA K. Spall experiments for the measurement of the tensile strength and fracture energy of concrete at high strain rates[J]. International Journal of Impact Engineering, 2006, 32(10):1635-1650. [12] BRARA A, CAMBORDE F, KLEPACZKO J R, et al. Experimental and numerical study of concrete at high strain rates in tension[J]. Mechanics of Materials, 2001, 33(1):33-45. [13] FORQUIN P, LUKIAC'U2 B. On the processing of spalling experiments. Part I: identification of the dynamic tensile strength of concrete[J]. Journal of Dynamic Behavior of Materials, 2018, 4(1): 34-55. [14] LUKIC B B, SALETTI D, FORQUIN P. On the processing of spalling experiments. Part II: identification of concrete fracture energy in dynamic tension[J]. Journal of Dynamic Behavior of Materials, 2017, 4(1):56-73. [15] ROSS C A, THOMPSON P Y, TEDESCO J W. Split-Hopkinson pressure-bar tests on concrete and mortar in tension and compression [J]. ACI Materials Journal, 1989, 86(5):475-481. [16] MACHIDA A. Studies on tests for splitting tensile strength of concrete[J]. Proceedings of the Japan Society of Civil Engineers, 1975, 1975(242):115-124 [17] TEDESCO J W, ROSS C A, BRUNAIR R M. Numerical analysis of dynamic split cylinder tests[J]. Computers & Structures, 1989, 32(3/4):609-624. [18] ZHAO J, LI H B. Experimental determination of dynamic tensile properties of granite[J]. International Journal of Rock Mechanics & Mining Sciences, 2000, 37(5):861-866. [19] DONG X L, CHEN J Y, GAO P C, et al. Experimental study on common and steel fiber reinforced concrete under dynamic tensile stress[J]. Journal of Beijing Institute of Technology, 2004, 13(3): 254-259. [20] GOMEZ J T, SHUKLA A, SHARMA A. Static and dynamic behavior of concrete and granite in tension with damage[J]. Theoretical & Applied Fracture Mechanics, 2001, 36(1):37-49. [21] FORQUIN P, ZINSZNER J L. A pulse-shaping technique to investigate the behaviour of brittle materials subjected to plate-impact tests[J]. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, 2017, 375(2085): 20160333. [22] 高光发.混凝土材料动态拉伸强度的应变率强化规律[J].高压物理学报,2017,31(5):593-602. GAO G F. Hardening effect of the strain rate on the dynamic tensile strength of the plain concrete[J]. Chinese Journal of High Pressure Physics, 2017, 31(5): 593-602. (in Chinese) [23] MELLINGER F M, BIRKIMER D L. Measurements of stress and strain on cylindrical test specimens of rock and concrete under impact loading[R]. Cincinnati, OH, US:Ohio River Div Labs Cincinnati, 1966: 4-46. [24] BIRKIMER D L. Critical normal fracture strain of Portland cement concrete[D]. Cincinnati, OH, US: University of Cincinnati, 1968: 3731-3731. [25] BIRKIMER D L, ROBERT L. Dynamic tensile strength of concrete materials[J]. Journal of Proceedings, 1971, 68(1): 47-49. [26] MCVAY, MARK K. Spall damage of concrete structures:SL-88-22[R]. Vicksburg, MS, US: Structures Laboratory, ARMY Engineer Waterways Experiment Station, Corps of Engineers, Department of the Army, 1988. [27] WU H J, ZHANG Q M, HUANG F L, et al. Experimental and numerical investigation on the dynamic tensile strength of concrete[J]. International Journal of Impact Engineering, 2005, 32(1/2/3/4): 605-617. [28] BRARA A, KLEPACZKO J R. Experimental characterization of concrete in dynamic tension[J]. Mechanics of Materials, 2006, 38(3):253-267. [29] ERZAR B, FORQUIN P. Experiments and mesoscopic modelling of dynamic testing of concrete[J]. Mechanics of Materials, 2011, 43(9):505-527. [30] COWELL W L. Dynamic properties of plain Portland cement concrete[R]. Port Hueneme, CA, US:Naval Civil Engineering Laboratory, 1966:46. [31] TAKEDA J, TACHIKAWA H. Deformation and fracture of concrete subjected to dynamic load[C]∥Proceedings of the Conference on Mechanical Behavior of Materials. Kyoto, Japan: Society of Materials Science, 1972:77-86. [32] JOHN R, ANTOUN T, RAJENDRAN A M. Effect of strain rate and size on tensile strength of concrete[C]∥Proceedings of the Conference of American Physical Society Topical Group on Shock Compression of Condensed Matter. Williamsburg, VA,US:American Physical Society, 1991:501-504. [33] ANTOUN T H. Constitutive/failure model for the static and dynamic behaviors of concrete incorporating effects of damage and anisotropy[D]. Dayton, OH,US: University of Dayton, 1991. [34] CHU T C, RANSON W F, SUTTON M A. Applications of digital image correlation techniques to experimental mechanics[J]. Experimental Mechanics, 1985, 25(3):232-244. [35] ZHANG Q B, ZHAO J. Determination of mechanical properties and full-field strain measurements of rock material under dynamic loads[J]. International Journal of Rock Mechanics & Mining Sciences, 2013, 60(8):423-439. [36] American Society for Testing and Material. Standard test method for splitting tensile strength of cylindrical concrete specimen: ASTM C496-86 [S]. West Conshohocken, PA, US: American Society for Testing and Material, 1986:256-259. [37] GLVEZ F, SANCHEZ GALVEZ V. Numerical modelling of SHPB splitting tests[J]. Journal de Physique IV, 2003, 110:347-352. [38] 郭瑞奇, 任辉启, 张磊, 等. 分离式大直径Hopkinson杆实验技术研究进展[J]. 兵工学报, 2019, 40(7):1518-1536. GUO R Q, REN H Q, ZHANG L, et al. Research progress of large diameter split Hopkinson bar experimental technique[J]. Acta Armamentraii, 2019, 40(7):1518-1536.(in Chinese) [39] CHEN J Y, XIANG D, WANG Z H, et al. Dynamic tensile strength enhancement of concrete in split Hopkinson pressure bar test[J]. Advances in Mechanical Engineering, 2018, 10(6): 1-7.
第41卷第1期 2020 年1月兵工学报ACTA ARMAMENTARIIVol.41No.1Jan.2020
|