[1] |
SHAHBEYK S, HOSSEINI M, YAGHOOBI M. Mesoscale finite element prediction of concrete failure[J]. Computational Materials Science, 2011, 50(7): 1973-1990. DOI: 10.1016/j.commatsci.2011.01.044.
|
[2] |
LEITE J P B, SLOWIK V, MIHASHI H. Computer simulation of fracture processes of concrete using mesolevel models of lattice structures[J]. Cement and Concrete Research, 2004, 34(6): 1025-1033. DOI: 10.1016/j.cemconres.2003.11.011.
|
[3] |
ZHOU R X, SONG Z H, LU W B, et al. 3D mesoscale finite element modelling of concrete[J]. Computers & Structures, 2017, 192: 96-113. DOI: 10.1016/j.compstruc.2017.07.009.
|
[4] |
XIONG Q R, WANG X F, JIVKOV A P. A 3D multi-phase meso-scale model for modelling coupling of damage and transport properties in concrete[J]. Cement and Concrete Composites, 2020, 109: 103545. DOI: 10.1016/j.cemconcomp.2020.103545.
|
[5] |
ERZAR B, FORQUIN P. Experiments and mesoscopic modelling of dynamic testing of concrete[J]. Mechanics of Materials, 2011, 43(9): 505-527. DOI: 10.1016/j.mechmat.2011.05.002.
|
[6] |
UNGER J F, ECKARDT S. Multiscale modeling of concrete[J]. Archives of Computational Methods in Engineering, 2011, 18(3): 341-393. DOI: 10.3151/jact.1.91.
|
[7] |
闫秋实, 宁素瑜, 王全胜, 等. 近场水中爆炸作用下钢筋混凝土桩破坏模式及损伤评估研究[J]. 混凝土, 2019(7): 32-36, 40.
|
|
YAN Q S, NING S Y, WANG Q S, et al. Damage effect for a typical reinforced concrete pile under the near field explosion in wate[J]. Concrete, 2019(7): 32-36, 40.
|
[8] |
ZHAO X H, WANG G H, LU W B, et al. Damage features of RC slabs subjected to air and underwater contact explosions[J]. Ocean Engineering, 2018, 147: 531-545.
doi: 10.1016/j.oceaneng.2017.11.007
URL
|
[9] |
WANG W, ZHANG D, LU F Y, et al. Experimental study on scaling the explosion resistance of a one-way square reinforced concrete slab under a close-in blast loading[J]. International Journal of Impact Engineering, 2012, 49: 158-164.
doi: 10.1016/j.ijimpeng.2012.03.010
URL
|
[10] |
HAI L, REN X D. Computational investigation on damage of reinforced concrete slab subjected to underwater explosion[J]. Ocean Engineering, 2020, 195: 106671.
doi: 10.1016/j.oceaneng.2019.106671
URL
|
[11] |
赵文达, 赵玉红, 闫秋实. 水下爆炸荷载作用下重力式沉箱码头破坏效应研究[Z]. 北京: 中国力学学会, 2019: P49-E0216.
|
|
ZHAO W D, ZHAO Y H, YAN Q S. Study on destructive effect of gravity caisson wharf under underwater explosion[Z]. Beijing: The Chinese Society of Theoretical and Applied Mechanics, 2019-P49-E0216.
|
[12] |
李凌锋, 韦灼彬, 唐廷, 等. 爆炸荷载下沉箱重力式码头模型毁伤效应[J]. 爆炸与冲击, 2019, 39(1): 10-16.
|
|
LI L F, WEI Z B, TANG T, et al. Damage effects of the caisson gravity wharf model subjected to explosion[J]. Explosion and Shock Waves, 2019, 39(1): 10-16.
|
[13] |
董琪, 韦灼彬, 唐廷, 等. 水下爆炸对沉箱重力式码头毁伤效应[J]. 爆炸与冲击, 2019, 39(6): 111-121.
|
|
DONG Q, WEI Z B, TANG T, et al. Damage effects of caisson gravity wharf under underwater explosion[J]. Explosion and Shock Waves, 2019, 39(6): 111-121.
|
[14] |
侯晓峰, 张洪忱, 吴涛, 等. 水中爆炸作用下某沉箱式结构动力响应分析及防护技术[J]. 防护工程, 2018, 40(6): 1-4.
|
|
HOU X F, ZHANG H C, WU T, et al. Dynamic resopnse and protection technology of the caisson structurein underwater explosion[J]. Protective Engineering, 2018, 40(6): 1-4.
|
[15] |
MEDEIROS W A, PARSEKIAN G A, MORENO A L. Residual mechanical properties of hollow concrete blocks with different aggregate types after exposure to high temperatures[J]. Construction and Building Materials, 2023, 377: 131085.
doi: 10.1016/j.conbuildmat.2023.131085
URL
|
[16] |
XIAO S M, ZHANG M, ZOU D J, et al. Influence of seawater and sea sand on the performance of Anti-washout underwater concrete: the overlooked significance of Mg2+[J]. Construction and Building Materials, 2023, 374: 130932.
doi: 10.1016/j.conbuildmat.2023.130932
URL
|
[17] |
ANGLADE E, AUBERT J, SELLIER A, et al. Physical and mechanical properties of clay-sand mixes to assess the performance of earth construction materials[J]. Journal of Building Engineering, 2022, 51: 104229.
doi: 10.1016/j.jobe.2022.104229
URL
|
[18] |
梁振刚, 陈柏旭, 赵书超, 等. 基于特征的杀爆弹建模技术研究[J]. 沈阳理工大学学报, 2018, 37(6): 40-43.
|
|
LIANG Z G, CHEN B X, ZHAO S C, et al. Research on modeling technology of detonation bomb based on features[J]. Journal of Shenyang University of Science and Technology, 2018, 37(6): 40-43.
|
[19] |
刘建斌, 徐豫新, 高鹏, 等. 火箭杀爆弹毁伤幅员仿真[J]. 兵工学报, 2016, 36(增刊2): 159-164.
|
|
LIU J B, XU Y X, GAO P, et al. Simulation on damage area of high explosive projectile[J]. Acta Armamentarii, 2016, 36(S2): 159-164.
|
[20] |
张志倩, 赵太勇, 王昭滨, 等. 杀爆战斗部联合作用场的毁伤效能研究[J]. 兵器装备工程学报, 2020, 41(1): 64-67, 82.
|
|
ZHANG Z Q, ZHAO T Y, WANG Z B, et al. Research on damage efficiency of joint a action field[J]. Journal of Ordnance Equipment Engineering, 2020, 41(1): 64-67, 82.
|
[21] |
LEE E L, HORNIG H C, KURY J W. Adiabatic expansion of high explosive detonation products[R]. Livermore,CA, US: Livermore Lawrence Radiation Laboratory,1968.
|