欢迎访问《兵工学报》官方网站,今天是

兵工学报

• •    下一篇

基于数据融合的无人机自主择址技术

周乐1,2,尹乔之1,2,3,钟沛霖1,2,魏小辉1,2,4*,聂宏1,2,3   

  1. 1.南京航空航天大学 航空学院;2.南京航空航天大学 飞行器先进设计技术国防重点学科实验室;3.南京航空航天大学 直升机动力学全国重点实验室;4.南京航空航天大学 航空航天结构力学及控制全国重点实验室
  • 收稿日期:2024-08-30 修回日期:2025-04-16
  • 基金资助:
    国家自然科学基金项目(52375102、52275114);教育部“春晖计划”合作科研项目(HZKY20220126);中国博士后科学基金资助项目(2021M691565);中央高校基本科研业务费专项资金(NS2023005);航空科学基金项目(202000410520002);国防卓越青年基金项目(2018-JCJQ-ZQ-053);江苏高校优势学科建设工程资助项目(2023年)

Autonomous UAV Location Selection Technology Based on Data Fusion

ZHOU Le1,2, YIN Qiaozhi1,2,3, ZHONG Peilin1,2, WEI Xiaohui1,2,4*, NIE Hong1,2,3   

  1. 1. College of Aerospace Engineering, Nanjing University of Aeronautics and Astronautics; 2. Key Laboratory of Fundamental Science for National Defense-Advanced Design Technology of Flight Vehicle, Nanjing University of Aeronautics and Astronautics; 3. National Key Laboratory of Helicopter Aeromechanics, Nanjing University of Aeronautics and Astronautics; 4. State Key Laboratory of Mechanics and Control for Aerospace Structures, Nanjing University of Aeronautics and Astronautics
  • Received:2024-08-30 Revised:2025-04-16

摘要: 无人机作为一种新型飞行器,正在逐步融入现代武器装备体系,成为军事领域中不可或缺的重要组成部分。为了使无人机具备安全的着陆决策系统,能够在没有地面标识的情况下自主地执行降落任务,提出一种基于多传感器数据融合从粗到精的分阶段自主择址技术。基于图像信息进行语义分割实现粗糙落点搜索,在引导无人机降低飞行高度之后,基于点云信息的高程值计算地形参数构建地形成本图,并考虑地形的类别融合图像语义信息,完成精细落点搜索。试验结果表明:该技术能够很好地划分出安全区域和危险区域,能够使无人机自主获取安全的着陆位置;在精细落点搜索阶段中通过与拟合点云平面实现决策的方式进行对比分析,验证了该技术能够较大程度地节省决策时间,提高择址效率。

关键词: 无人机, 自主择址;数据融合;地形成本图;语义分割

Abstract: As a new type of aircraft, the unmanned aerial vehicle (UAV) is gradually integrating into the modern weaponry system and becoming an indispensable and important part of the military field. In order to equip UAVs with a safe landing decision-making system that can autonomously perform landing tasks without ground marking, this paper proposes a phased autonomous address selection technique based on multi-sensor data fusion from coarse to fine. Based on the semantic segmentation of the image information to realize the rough landing point search, after guiding the UAV to reduce the flight altitude, the terrain parameters are calculated based on the elevation value of the point cloud information to construct the terrain cost map, and the semantic information of the image is fused considering the category of the terrain to complete the fine landing point search. The experimental results show that this technology can well delineate the safe and dangerous areas, and enable the UAV to autonomously obtain a safe landing position. Meanwhile, comparative analysis of the decision-making in the fine landing point search stage with the fitted point cloud plane verifies that the technique can save decision-making time to a greater extent and improve the efficiency of site selection.

Key words: unmanned aerial vehicle, autonomous landing site selection, data fusion, terrain cost map, semantic segmentation

中图分类号: