欢迎访问《兵工学报》官方网站,今天是

兵工学报 ›› 2025, Vol. 46 ›› Issue (5): 240501-.doi: 10.12382/bgxb.2024.0501

• • 上一篇    

基于雷达-红外成像特征级融合的角反射器智能识别算法

孙殿星1,2, 窦钥聪1,*(), 彭锐晖1, 董云龙2, 郭玮1   

  1. 1 哈尔滨工程大学 信息与通信工程学院, 黑龙江 哈尔滨 150001
    2 海军航空大学, 山东 烟台 264001
  • 收稿日期:2024-06-26 上线日期:2025-05-07
  • 通讯作者:
  • 基金资助:
    国防科技重点实验室基金项目(2023-JCJQ-LB-016)

An Intelligent Corner Reflector Recognition Algorithm Based on Radar-infrared Imaging Feature-level Fusion

SUN Dianxing1,2, DOU Yuecong1,*(), PENG Ruihui1, DONG Yunlong2, GUO Wei1   

  1. 1 College of Information and Communication Engineering, Harbin Engineering University, Harbin 150001, Heilongjiang, China
    2 Naval Aeronautical University, Yantai 264001, Shandong, China
  • Received:2024-06-26 Online:2025-05-07

摘要:

海面角反射器具有极强的雷达回波特性,其形成的假目标在时域持续干扰,制造虚假态势,给导引头的精准打击带来很大挑战。针对该问题,利用红外传感器不受角反射器干扰的优势,提出一种基于雷达-红外特征级融合的多目标场景下角反射器智能识别算法。通过YOLOv8网络对红外图像的目标干扰进行初次判别,高置信度目标图像直接输出识别结果;对低置信度目标图像单独裁剪,利用雷达-红外角度信息进行目标关联并提取雷达特征;将雷达特征与红外图像作为双通道融合网络的输入,实现对低置信度目标的二次判别。经实测数据验证,所提方法的识别准确率在96%以上,所做工作对角反射器干扰识别具有参考意义。

关键词: 角反射器, 目标识别, 雷达红外复合制导, 双通道特征融合网络

Abstract:

The sea surface corner reflector exhibits extremely strong radar echo characteristics. It creates the false targets that interferes continuously in the time domain and generates a deceptive situation to bring a significant challenge to the precision strike capability of a seeker. To address this issue, the immunity of infrared sensors to corner reflector interference is leveraged, and an intelligent recognition algorithm for corner reflectors in multi-target scenarios based on radar-infrared feature-level fusion is proposed. The target interference in infrared images is preliminarily discriminated by YOLOv8 network. The high-confidence target images can directly output the recognition results. The low-confidence target images are individually cropped for target correlation using radar-infrared angular information and radar feature extraction. The radar features and infrared images are input into a dual-channel fusion network, achieving the secondary recognition of low-confidence targets. The measured data validate that the recognition accuracy of the proposed method exceeds 96%. The research work has significant reference value for corner reflector interference recognition.

Key words: corner reflector, target recognition, radar-infrared composite guidance, dual-channel feature fusion network

中图分类号: