欢迎访问《兵工学报》官方网站,今天是

兵工学报 ›› 2025, Vol. 46 ›› Issue (4): 240355-.doi: 10.12382/bgxb.2024.0355

• • 上一篇    下一篇

轮毂电机多目标优化设计与温升估计

高琢1, 李军求1,*(), 周阳1, 张小鹏2, 谭平2, 邱锰2, 朱家豪2   

  1. 1 北京理工大学 机械与车辆工程学院, 北京 100081
    2 江麓机电集团有限公司, 湖南 湘潭 411200
  • 收稿日期:2024-05-09 上线日期:2025-04-30
  • 通讯作者:
  • 基金资助:
    科技部国家重点研发项目(2021YFB2501801); 国家自然科学基金项目(52072037)

Multi-objective Optimization Design and Temperature Rise Estimation of In-wheel Electric Machine

GAO Zhuo1, LI Junqiu1,*(), ZHOU Yang1, ZHANG Xiaopeng2, TAN Ping2, QIU Meng2, ZHU Jiahao2   

  1. 1 School of Mechanical and Vehicle Engineering, Beijing Institute of Technology, Beijing 100081, China
    2 Jianglu Machinery Electronics Group Co., Ltd., Xiangtan 411200, Hunan, China
  • Received:2024-05-09 Online:2025-04-30

摘要:

针对特种车辆电驱动系统高扭矩密度需求,为能够充分提升峰值扭矩能力和效率,降低扭矩波动,防止电机过热,提出了一种基于多物理场模型的轮毂电机多目标优化设计和温升估计方法。基于整车工况需求建立了轮毂电机电磁有限元模型和损耗模型。采用非支配排序遗传算法Ⅱ实现轮毂电机峰值扭矩、扭矩波动、效率、绕组换热面积的多目标优化,得到优化后电机电磁关键结构参数与损耗特性。基于几何结构建立了包含轮毂电机在内的电动轮热网络温升估计模型,预测了轮毂电机典型工况温升及温度分布特性。通过温升台架实验对温升预测模型精度进行了验证。研究结果表明,优化后轮毂电机峰值扭矩提升5.2%,峰值扭矩效率提升1.15%,端部绕组预测温度与实验结果对比均方根误差不超过4.3℃,计算速度大幅提升。

关键词: 轮毂电机, 多目标优化, 热网络模型, 温升估计

Abstract:

According to the high torque density requirement for electric drive system of special vehicle,a multi-physics-based multi-objective optimization design and temperature rise estimation method for in-wheel electric machine is proposed to effectively enhance the peak torque and efficiency,reduce the torque ripple and prevent the in-wheel electric machine from overheating.The electromagnetism finite element model and loss models of in-wheel electric machine are established based on the vehicle mission profile.Non-dominated sorting genetic algorithm-Ⅱ(NSGA-Ⅱ) is applied to optimize the peak torque,torque ripple,efficiency,and heat exchange area of winding.Based on the key geometry parameters and losses characteristics obtained,a temperature rise estimation model for electric wheel lumped parameter thermal network including the electric machine is established to estimate the temperature rise and distribution characteristics under typical working conditions.The accuracy of the temperature rise estimation model is validated through a testbench.The result shows that the peak torque and its efficiency of optimized in-wheel electric machine are increased 5.2% and 1.15%,respectively.The root mean square error of the estimated temperature is less than 4.3℃ compared with experimental result,and the calculation effort is dramatically reduced.

Key words: in-wheel electric machine, multi-objective optimization, thermal network model, temperature rise estimation