[18] |
HAN J X, BAI Q D, ZHANG S J, et al. Experimental study of H2/air rotating detonation wave propagation characteristics at low injection pressure[J]. Aerospace Science and Technology, 2022, 126:107628.
|
[19] |
LIU Q M, ZHANG Y M, LI S Z. Study on the critical parameters of spherical detonation direct initiation in hydrogen/oxygen mixtures[J]. International Journal of Hydrogen Energy, 2015, 40(46): 16597-16604.
|
[20] |
FAGHIH M, MÉVEL R, HE Y, et al. Effect of 2-step energy release on direct detonation initiation by a point energy source in a rich H2-NO2/N2O4 mixture[J]. Combustion and Flame, 2020,222:317-325.
|
[21] |
ZHANG B, NG H D, LEE J H. Measurement and scaling analysis of critical energy for direct initiation of gaseous detonations[J]. Shock Waves, 2012, 22(3):275-279.
|
[22] |
LEE J H. The detonation phenomenon[M]. New York, NY, US: Cambridge University Press, 2008.
|
[23] |
罗永晨, 续晗, 张锋, 等. 乙烯对煤粉-氧气爆轰波起爆特性影响机制的实验研究[J]. 兵工学报, 2024, 45(3):754-762.
doi: 10.12382/bgxb.2022.0600
|
|
LUO Y C, XU H, ZHANG F, et al. Experimental study on the effect of ethylene on the detonation onset of coal-oxygen mixture[J]. Acta Armamentarii, 2024, 45(3):754-762. (in Chinese)
|
[24] |
张云明. 可燃气体火焰传播与爆轰直接起爆特性研究[D]. 北京: 北京理工大学, 2015.
|
|
ZHANG Y M. Investigation on the characteristics of flame propagation and direct initiation of detonation for combustible gas[D]. Beijing: Beijing Institute of Technology, 2015. (in Chinese)
|
[25] |
张博, LEE J H S, 白春华. C2H4-O2混合气体直接起爆的临界能量[J]. 爆炸与冲击, 2012, 32(2): 113-120.
|
|
ZHANG B, S L J H, BAI C H. Critical energy for direct initiation of C2H4-O2 mixture[J]. Explosion and Shock, 2012, 32(2):113-120. (in Chinese)
|
[26] |
ZHANG F, MURRAY S B, GERRARD K B. Aluminum particles-air detonation at elevated pressures[J]. Shock Waves, 2006, 15(5):313-324.
|
[27] |
HOU Z W, HUANG X L, LI N, et al. Shock characteristics evolution of detonation waves forward impacting on the solid wall[J]. AIP Advances, 2022, 12(3): 35104.
|
[28] |
YANG L, YAO J, YANG Z, et al. Experimental investigation into the detonation characteristics of hybrid RDX-ethylene-air mixtures[J]. Shock Waves, 2016, 26(5):611-619.
|
[1] |
张树杰, 张立锋, 姚松柏, 等. 当量比对连续旋转爆轰发动机的影响研究[J]. 兵工学报, 2017, 38(增刊1): 1-7.
|
|
ZHANG S J, ZHANG L F, YAO S B, et al. Numerical investigation on rotating detonation engine with varying equivalence ratios[J]. Acta Armamentarii, 2017, 38(S1):1-7. (in Chinese)
|
[2] |
冯文康, 郑权, 汪小卫, 等. 当量比对煤油-空气两相旋转爆轰波的影响[J]. 兵工学报, 2022, 43(6):1304-1315.
doi: 10.12382/bgxb.2021.0352
|
|
FENG W K, ZHENG Q, WANG X W, et al. Effect of equivalent ratio on two-phase rotating detonation wave of kerosene-air[J]. Acta Armamentarii, 2022, 43(6):1304-1315. (in Chinese)
doi: 10.12382/bgxb.2021.0352
|
[3] |
李悦, 胡春波, 胡加明, 等. 粉末火箭发动机研究进展[J]. 推进技术, 2018, 39(8):1681-1695.
|
|
LI Y, HU C B, HU J M, et al. Progress of powder rocket engine technology[J]. Journal of Propulsion Technology, 2018, 39(8):1681-1695. (in Chinese)
|
[4] |
刘龙. 镁颗粒-空气混合物爆震波起爆与自维持传播特性研究[D]. 长沙: 国防科技大学, 2020.
|
|
LIU L. Investigation on the initiation and self-sustaining propagation of the magnesium particle-air mixture[D]. Changsha: National University of Defense Technology, 2020. (in Chinese)
|
[5] |
LI Y, HU C B, DENG Z, et al. Experimental study on multiple-pulse performance characteristics of ammonium perchlorate/aluminum powder rocket motor[J]. Acta Astronautica, 2017, 133: 455-466.
|
[6] |
韦伟. 铝粉燃料PDE爆轰特性的理论与实验研究[D]. 南京: 南京理工大学, 2019.
|
|
WEI W. Theoretical and experimental studies on detonation characteristics of aluminum fuel pulse detonation engine[D]. Nanjing: Nanjing University of Science and Technology, 2019. (in Chinese)
|
[7] |
韦伟, 翁春生. 以铝粉为燃料的脉冲爆轰发动机数值研究[J]. 固体火箭技术, 2017, 40(1):37-40.
|
|
WEI W, WENG C S. Numerical simulation of detonation engine using aluminum dust as fuel[J]. Journal of Solid Rocket Technology, 2017, 40(1): 37-40. (in Chinese)
|
[8] |
续晗, 罗永晨, 倪晓冬, 等. 铝粉燃料连续旋转爆轰发动机工作特性研究[J]. 兵工学报, 2022, 43(5):1046-1053.
doi: 10.12382/bgxb.2022.0002
|
|
XU H, LUO Y C, NI X D, et al. Operating characteristics of aluminum powder rotating detonation engine[J]. Acta Armamentarii, 2022, 43(5):1046-1053. (in Chinese)
doi: 10.12382/bgxb.2022.0002
|
[9] |
BYKOVSKII F A, ZHDAN S A, VEDERNIKOV E F, et al. Detonation combustion of coal[J]. Combustion, Explosion, and Shock Waves, 2012, 48(2): 203-208.
|
[10] |
BYKOVSKII F A, ZHDAN S A, VEDERNIKOV E F, et al. Continuous and pulsed detonation of a coal-air mixture[J]. Doklady. Physics, 2010, 55(3):142-144.
|
[11] |
DUNN I B, MALIK V, FLORES W, et al. Experimental and theoretical analysis of carbon driven detonation waves in a heterogeneously premixed rotating detonation engine[J]. Fuel, 2021, 302:121128.
|
[12] |
DUNN I, FLORES W, MORALES A, et al. Carbon-based multi-phase rotating detonation engine[J]. Journal of Energy Resources Technology, 2021, 144(4):042101.
|
[13] |
XU H, NI X D, SU X J, et al. Experimental investigation on the application of the coal powder as fuel in a rotating detonation combustor[J]. Applied Thermal Engineering, 2022, 213: 118642.
|
[14] |
BURKE R, REZZAG T, AHMED K. Carbon and hydrocarbon particle seeding in air-breathing rotating detonation engine[J]. Journal of Engineering for Gas Turbines and Power, 2022, 144(1):011013.
|
[15] |
VASIL EV A A. Characteristics of combustion and detonation of methane-coal mixtures[J]. Combustion, Explosion, and Shock Waves, 2013, 49(4): 424-434.
|
[16] |
PINAEV A V. Combustion and detonation waves in methane mixtures with suspensions of fine coal particles[J]. Journal of Physics: Conference Series, 2019, 1382(1):12096.
|
[17] |
赵明皓, 王可, 王致程, 等. 点火位置对两相旋转爆震波起爆特性影响的实验研究[J]. 推进技术, 2023, 44(4):2202046.
|
|
ZHAO M H, WANG K, WANG Z C, et al. Experimental study on effects of ignition positions on initiation characteristics of two-phase rotating detonation waves[J]. Journal of Propulsion Technology, 2023, 44(4): 2202046. (in Chinese)
|