[1] KAILASANATH K. Review of propulsion applications of detonation waves[J]. AIAA Journal, 2000, 38(9):1698-1708. [2] WOLAAN'U2SKI P. Detonation propulsion[J]. Proceedings of the Combustion Institute, 2013, 34(1):125-158. [3] JIANG Z L, ZHANG Z J, LIU Y F, et al. The criteria for hypersonic airbreathing propulsion and its experimental verification[J]. Chinese Journal of Aeronautics, 2021, 34(3):94-104. [4] LU F K, BRAUN E M. Rotating detonation wave propulsion: experimental challenges, modeling, and engine concepts[J]. Journal of Propulsion and Power, 2014, 30(5):1125-1143. [5] WANG C, LIU W D, LIU S J, et al. Experimental verification of air-breathing continuous rotating detonation fueled by hydrogen[J]. International Journal of Hydrogen Energy, 2015, 40(30):9530-9538. [6] WEI W L, WU Y W, WENG C S, et al. Influence of propagation direction on operation performance of rotating detonation combustor with turbine guide vane[J]. Defence Technology, 2021,17(5):1617-1624. [7] XIA Z J, TANG X M, LUAN M Y, et al. Numerical investigation of two-wave collision and wave structure evolution of rotating detonation engine with hollow combustor[J]. International Journal of Hydrogen Energy, 2018, 43(46):21582-21591. [8] XIA Z J, MA H, GE G Y, et al. Visual experimental investigation on stable operating process of the plane-radial rotating detonation engine[J]. Aerospace Science and Technology, 2021, 109:106430. [9] KINDRACKI J, WOLANSKI P, GUT Z. Experimental research on the rotating detonation in gaseous detonation in gaseous fuels-oxygen mixtures[J]. Shock Wave, 2011, 21(2):75-84. [10] KINDRACKI J. Experimental studies of kerosene injection into a model of a detonation chamber[J]. Journal of Power Technologies, 2012, 92(2):80-89. [11] 刘世杰, 刘卫东, 林志勇, 等. 连续旋转爆震波传播过程研究 (I):同向传播模式[J]. 推进技术,2014,35(1):138-144. LIU S J, LIU W D, LIN Z Y, et al. Research on continuous rotating detonation wave propagation process (I): one direction mode[J]. Journal of Propulsion Technology, 2014, 35(1):138-144. (in Chinese) [12] 刘世杰, 林志勇, 刘卫东, 等. 连续旋转爆震波传播过程研究 (II):双波对撞传播模式[J]. 推进技术,2014,35(2):269-275. LIU S J, LIU W D, LIN Z Y, et al. Research on continuous rotating detonation wave propagation process (II): two-wave collision propagation mode[J]. Journal of Propulsion Technology, 2014, 35(2):269-275.(in Chinese) [13] LIN W, ZHOU J, LIU S J, et al. Experimental study on propagation mode of H2/air continuously rotating detonation wave[J]. International Journal of Hydrogen Energy, 2015, 40(30):1980-1993. [14] WANG Y H,WANG J P. Coexistence of detonation with deflagration in rotating detonation engines[J]. International Journal of Hydrogen Energy, 2016, 41(32):14302-14309. [15] WANG Y H,WANG J P. Effect of equivalence ratio on the velocity of rotating detonation[J]. International Journal of Hydrogen Energy, 2015, 40(25):7949-7955. [16] FABIAN C, MIRKO C. Study of parasitic combustion in an optically accessible continuous wave rotating detonation engine[C]∥Proceedings of AIAA SciTech Forum.San Diego, CA, US:AIAA, 2019. [17] PENG H Y, LIU W D, LIU S J, et al. The competitive relationship between detonation and deflagration in the inner cylinder-variable continuous rotating detonation combustor[J]. Aerospace Science and Technology, 2020, 107:106263. [18] ZHAO M J, MATTHEW J C, ZHANG H W. Combustion mode and wave multiplicity in rotating detonative combustion with separate reactant injection[J]. Combustion and Flame, 2021, 225: 291-304. [19] ZHENG Q, MENG H L, WENG C, et al. Experimental research on the instability propagation characteristics of liquid kerosene rotating detonation wave[J]. Defence Technology, 2020, 16(6): 1106-1115. [20] 李宝星, 王中, 许桂阳, 等. 煤油燃料旋转爆轰波起爆与传播特性实验研究[J]. 兵工学报, 2020, 40(7): 1340-1346. LI B X, WANG Z, XU G Y, et al. Experimental research on initiation and propagation characteristics of kerosene fuel rotating detonation wave[J]. Acta Armamentarii, 2020, 40(7):1340-1346.(in Chinese) [21] WILHITE J, DRISCOLL R, GEORGE A S T, et al. Investigation of a rotating detonation engine using ethylene-air mixtures[C]∥Proceedings of the 54th AIAA Aerospace Sciences Meeting. San Diego, CA, US:AIAA, 2016. [22] GEORGE A S T, DRISCOLL R, ANAND V, et al. Fuel Blending as a Means to Achieve Initiation in a Rotating Detonation Engine[C]∥Proceedings of the 53rd AIAA Aerospace Sciences Meeting.Kissimmee,FL, US:AIAA, 2015. [23] PAL P, XU C, KUMAR G, et al. Large-eddy simulations and mode analysis of ethylene/air combustion in a non-premixed rotating detonation engine[C]∥ Proceedings of AIAA SciTech Forum.Orlando,FL, US:AIAA, 2020. [24] 马立坤, 李潮隆, 夏智勋, 等.带凹腔火焰稳定器的固体火箭超燃冲压发动机燃烧室试验研究[J].推进技术, 2021, 42(2): 319-326. MA L K, LI C L, XIA Z X, et al. Experimental investigation of solid rocket scramjet combustor with cavity flame holder[J]. Journal of Propulsion Technology, 2021, 42(2):319-326.(in Chinese) [25] CAI Z, SUN M, WANG Z, et al. Effect of cavity geometry on fuel transport and mixing processes in a scramjet combustor[J]. Aerospace Science and Technology, 2018, 80:309-314. [26] PENG H Y, LIU W D, LIU S J, et al. The effect of cavity on ethylene-air continuous rotating detonation in the annular combustor[J]. International Journal of Hydrogen Energy, 2019, 44(26):14032-14043. [27] PENG H Y, LIU W D, LIU S J, et al. Effects of cavity location on ethylene-air continuous rotating detonation in a cavity-based annular combustor[J]. Combustion Science and Technology, 2021, 193(16):2761-27822. [28] LIU S J, PENG H Y, LIU W D, et al. Effects of cavity depth on the ethylene-air continuous rotating detonation[J]. Acta Astronautica, 2020, 166:1-10. [29] LAPOINTE C, WIMER N T, GLUSMAN J F, et al. Efficient simulation of turbulent diffusion flames in OpenFOAM using adaptive mesh refinement[J]. Fire Safety Journal, 2020, 111:102934. [30] KURGANOV A, TADMOR E. New high-resolution central schemes for nonlinear conservation laws and convection-diffusion equations[J]. Journal of Computational Physics, 2000, 160(1): 241-282. [31] WESTBROOK C K, DRYER F L. Simplified reaction mechanisms for the oxidation of hydrocarbon fuels in flames[J]. Combustion Science and Technology, 1981, 27(1/2):31-43. [32] COCKS P A, HOLLEY A T, RANKIN B A. High fidelity simulations of a non-premixed rotating detonation engine[C]∥Proceedings of the 54th AIAA Aerospace Sciences Meeting. San Diego, CA, US:AIAA, 2016. [33] ZHANG L F, MA J Z, ZHANG S J, et al. Three-dimensional numerical study on rotating detonation engines using reactive Navier-Stokes equations[J]. Aerospace Science and Technology, 2019, 93:105271. [34] 刘朋欣, 郭启龙, 赵炜, 等. 基于旋转爆震三维流场结构分析的计算模型对比研究[J]. 推进技术,2020, 41(12):2757-2765. LIU P X, GUO Q L, ZHAO W, et al. Computational models based on analysis of three-dimensional flow field structures in rotating detonation[J]. Journal of Propulsion Technology, 2020, 41(12):2757-2765.(in Chinese) [35] LAWSON J, SHEPHERD J. Shock and detonation toolbox installation instructions[M]. Pasadena, CA,US:California Institute of Technology, 2020:1-8. [36] WILLIAMS F A. Chemical kinetic mechanism for combustion application [M]. San Diego,CA, US: University of California at, 2014. [37] XU C, KONNOV A A. Validation and analysis of detailed kinetic models for ethylene combustion[J]. Energy, 2012, 43(1): 19-29. [38] XIAO Q, RADULESCU M I. Role of instability on the limits of laterally strained detonation waves[J]. Combustion and Flame, 2020, 220:410-428. [39] DAMAZO J, SHEPHERD J. Observations on the normal reflection of gaseous detonations[J], Shock Waves, 2017, 27:795-810. [40] XIAO Q, SOW A, MAXWELL B, et al. Effect of boundary layer losses on 2D detonation cellular structures[J]. Proceedings of the Combustion Institute, 2021, 38(3):3641-3649. [41] GORDON S, MCBRIDE B J. Computer program for calculation of complex chemical equilibrium composition and applications[M]. Washington, DC, US:National Aeronautics and Space Administration, 1996. [42] 孟豪龙, 翁春生, 武郁文, 等. 基于OpenFOAM的三维H2/Air连续旋转爆轰流场数值模拟[J]. 推进技术, 2020, 41(6): 1351-1360. MENG H L, WENG C S, WU Y W, et al. Three-dimensional numerical simulation of H2/air continuous rotating detonation flow field based on OpenFoam[J]. Journal of Propulsion Technology, 2020, 41(6):1351-1360.(in Chinese) [43] WANG F, WENG C S, WU Y W, et al. Effects of total pressure and equivalent ratio on kerosene/air rotating detonation engines using a paralleling CE/SE method[J]. Defence Technology, 2021,17(6): 1805-1816. [44] 杨鹏飞, 牟乾辉, 滕宏辉, 等. 旋转爆轰波中多波流动模式的数值研究[J]. 推进技术, 2019, 40(2): 398-406. YANG P F, MOU Q H, TENG H Y, et al. Numerical investigation on multiple wave propagation mode of rotating detonation waves[J]. Journal of Propulsion Technology, 2019, 40(2):398-406. (in Chinese) [45] MA Z, ZHANG S J, LUAN M Y, et al. Experimental research on ignition, quenching, reinitiation and the stabilization process in rotating detonation engine[J]. International Journal of Hydrogen Energy, 2018, 43(39):18521-18529. [46] 周朱林, 刘卫东, 刘世杰, 等. 受侧向膨胀影响的爆震波传播过程研究[J]. 推进技术, 2013, 34(5):713-720. ZHOU Z L, LIU W D, LIU S J, et al. Investigation on propagation process of detonation wave influenced by lateral expansion[J]. Journal of Propulsion Technology, 2013, 34(5):713-720.(in Chinese) [47] ORAN E S,GAMEZO V N.Origins of the deflagration-to-detonation transition in gas-phase combustion[J].Combustion and Flame,2007, 148(1/2):4-47.
|