欢迎访问《兵工学报》官方网站,今天是 分享到:

兵工学报 ›› 2022, Vol. 43 ›› Issue (9): 2164-2171.doi: 10.12382/bgxb.2022.0444

• 论文 • 上一篇    下一篇

生物软组织力学测试及相关理论研究

康巍1,2,3, 徐鹏1,2,3, 卜伟平4, 岳艳鲜1,2,3, 王丽珍1,2,3, 樊瑜波1,2,3,5   

  1. 1. 北京航空航天大学 生物与医学工程学院, 北京 100083; 2. 北京航空航天大学 北京市生物医学工程高精尖创新中心,北京 100083;3. 北京航空航天大学 生物力学与力生物学教育部重点实验室, 北京 100083;4.中国人民解放军空军特色医学中心, 北京 100142; 5.北京航空航天大学 医学科学与工程学院, 北京 100083)
  • 上线日期:2022-09-21
  • 作者简介:康巍(1994—), 男, 博士研究生。 E-mail: kangw14@buaa.edu.cn
  • 基金资助:
    国家自然科学基金项目(12172034)

Mechanical Testing of Biological Soft Tissue and Related Theoretical Research

KANG Wei1,2,3, XU Peng1,2,3, BU Weiping4, YUE Yanxian1,2,3, WANG Lizhen1,2,3, FAN Yubo1,2,3,5   

  1. (1.School of Biological Science and Medical Engineering, Beihang University,Beijing 100083, China;2. Beijing Advanced Innovation Center for Biomedical Engineering, Beihang University,Beijing 100083, China;3.Key Laboratory for Biomechanics and Mechanobiology, Ministry of Education, Beihang University,Beijing 100083, China4.PLA Air Force Characteristic Medical Center, Beijing 100142, China; 5.School of Medical Science and Engineering, Beihang University,Beijing 100083, China)
  • Online:2022-09-21

摘要: 合理的本构模型及正确的材料参数是进行有效数值计算以及靶标制备来表征生物软组织高速撞击下力学响应的前提方法。对典型的生物软组织及材料力学测试方法从单一加载模式拓展到剪切加载乃至混合加载进行了阐述,均进行详细的理论推导并得到各个模式下的主伸长。结果表明:基于各个加载模式下的主伸长,可以得到应力主面、形变最大值及方向来评估生物软组织及其对应仿生靶标的最大受力面及破坏程度等,便于深入探索生物软组织细观结构及模拟材料设计与其宏观力学性能相关性规律,旨在建立更加科学合理的人体仿生靶标。

关键词: 生物软组织, 力学测试, 静动态, 本构模型, 人体仿生靶标

Abstract: Reasonable constitutive models and correct material parameters are the prerequisites for effective numerical calculation and target preparation to characterize the mechanical response of biological soft tissues under high-speed impact. The typical mechanical testing methods for biological soft tissues and materials are elaborated from single loading mode to shear loading and even mixed loading, and detailed theoretical derivation is carried out. The results show that: principal elongations under each loading mode are obtained, based on which the principal stress plane, maximum deformation value, and direction can be obtained to evaluate the maximum stress plane and damage degree of the biological soft tissue and its corresponding bionic target, which is convenient for in-depth exploration of the correlation between the microstructure of the biological soft tissue as well as simulated material design and their macro mechanical properties, with the aim of establishing a more scientific and reasonable bionic human target.

Key words: biologicalsofttissue, mechanicaltest, staticanddynamic, cnstitutivemodel, bionichumantarget

中图分类号: