Acta Armamentarii ›› 2024, Vol. 45 ›› Issue (S1): 51-59.doi: 10.12382/bgxb.2024.0659
Previous Articles Next Articles
SUN Xichen1, LI Weibing2, HUANG Changwei1, FU Jiawei2, FENG Jun1,*()
Received:
2024-08-01
Online:
2024-11-06
Contact:
FENG Jun
CLC Number:
SUN Xichen, LI Weibing, HUANG Changwei, FU Jiawei, FENG Jun. Multi-step-ahead Prediction of Grenade Trajectory Based on CNN-LSTM Enhanced by Deep Learning and Self-attention Mechanism[J]. Acta Armamentarii, 2024, 45(S1): 51-59.
Add to citation manager EndNote|Ris|BibTeX
参数 | 采样值 | 采样间隔 |
---|---|---|
发射角/(°) | [30,60] | 2 |
速度/(m·s-1) | [600,900] | 10 |
Table 1 Parameters of projectile trajectory
参数 | 采样值 | 采样间隔 |
---|---|---|
发射角/(°) | [30,60] | 2 |
速度/(m·s-1) | [600,900] | 10 |
参数 | 采样值 |
---|---|
迭代次数 | 50 |
学习率 | 0.0001 |
批处理量 | 256 |
优化器 | Adam |
Table 2 Parameters of model
参数 | 采样值 |
---|---|
迭代次数 | 50 |
学习率 | 0.0001 |
批处理量 | 256 |
优化器 | Adam |
模型 | 参数 | 层信息 |
---|---|---|
LSTM层 | 神经元数量32 | |
Dropout | dropout率0.2 | |
LSTM | LSTM层 | 神经元数量32 |
Dropout | dropout率0.2 | |
全连接层 | 神经元数量3 | |
1D Conv | 卷积核数量16,长度2 | |
1D Conv | 卷积核数量64,长度2 | |
LSTM层 | 神经元数量32 | |
CNN-LSTM | Dropout | dropout率0.2 |
LSTM层 | 神经元数量32 | |
Dropout | dropout率0.2 | |
全连接层 | 神经元数量3 | |
1D Conv | 卷积核数量16,长度2 | |
1D Conv | 卷积核数量64,长度2 | |
LSTM层 | 神经元数量32 | |
CNN-LSTM-ATT | Dropout | dropout率0.2 |
LSTM层 | 神经元数量32 | |
Dropout | dropout率0.2 | |
Attention | - | |
全连接层 | 神经元数量3 |
Table 3 Parameters of CNN-LSTM-ATT model
模型 | 参数 | 层信息 |
---|---|---|
LSTM层 | 神经元数量32 | |
Dropout | dropout率0.2 | |
LSTM | LSTM层 | 神经元数量32 |
Dropout | dropout率0.2 | |
全连接层 | 神经元数量3 | |
1D Conv | 卷积核数量16,长度2 | |
1D Conv | 卷积核数量64,长度2 | |
LSTM层 | 神经元数量32 | |
CNN-LSTM | Dropout | dropout率0.2 |
LSTM层 | 神经元数量32 | |
Dropout | dropout率0.2 | |
全连接层 | 神经元数量3 | |
1D Conv | 卷积核数量16,长度2 | |
1D Conv | 卷积核数量64,长度2 | |
LSTM层 | 神经元数量32 | |
CNN-LSTM-ATT | Dropout | dropout率0.2 |
LSTM层 | 神经元数量32 | |
Dropout | dropout率0.2 | |
Attention | - | |
全连接层 | 神经元数量3 |
模型 | 指标 | RMSE | MAE | MAPE |
---|---|---|---|---|
射程 | 17.9307 | 17.6723 | 0.0016 | |
LSTM | 高度 | 7.6089 | 7.5682 | 0.0025 |
横偏 | 0.0251 | 0.0250 | 0.4486 | |
射程 | 8.4263 | 8.0821 | 0.0008 | |
CNN-LSTM | 高度 | 1.6797 | 1.5311 | 0.0005 |
横偏 | 0.0031 | 0.0025 | 0.0261 | |
射程 | 3.8534 | 3.2533 | 0.0003 | |
CNN-LSTM-ATT | 高度 | 0.4904 | 0.3544 | 0.0001 |
横偏 | 0.0028 | 0.0024 | 0.0125 |
Table 4 Evaluation index values of each model in single-step prediction
模型 | 指标 | RMSE | MAE | MAPE |
---|---|---|---|---|
射程 | 17.9307 | 17.6723 | 0.0016 | |
LSTM | 高度 | 7.6089 | 7.5682 | 0.0025 |
横偏 | 0.0251 | 0.0250 | 0.4486 | |
射程 | 8.4263 | 8.0821 | 0.0008 | |
CNN-LSTM | 高度 | 1.6797 | 1.5311 | 0.0005 |
横偏 | 0.0031 | 0.0025 | 0.0261 | |
射程 | 3.8534 | 3.2533 | 0.0003 | |
CNN-LSTM-ATT | 高度 | 0.4904 | 0.3544 | 0.0001 |
横偏 | 0.0028 | 0.0024 | 0.0125 |
模型 | 指标 | RMSE | MAE | MAPE |
---|---|---|---|---|
射程 | 1100.7459 | 1099.5727 | 0.0794 | |
LSTM | 高度 | 1149.5802 | 1143.1826 | 0.7015 |
横偏 | 2.8553 | 2.8549 | 0.5368 | |
射程 | 583.2472 | 576.1506 | 0.0435 | |
CNN-LSTM | 高度 | 59.9948 | 58.3547 | 0.0212 |
横偏 | 0.2717 | 0.2675 | 0.1081 | |
射程 | 88.5846 | 82.8266 | 0.0064 | |
CNN-LSTM-ATT | 高度 | 14.4405 | 11.6751 | 0.0045 |
横偏 | 0.0788 | 0.0693 | 0.0255 |
Table 5 500-step prediction of the values of the evaluation indexes for each model
模型 | 指标 | RMSE | MAE | MAPE |
---|---|---|---|---|
射程 | 1100.7459 | 1099.5727 | 0.0794 | |
LSTM | 高度 | 1149.5802 | 1143.1826 | 0.7015 |
横偏 | 2.8553 | 2.8549 | 0.5368 | |
射程 | 583.2472 | 576.1506 | 0.0435 | |
CNN-LSTM | 高度 | 59.9948 | 58.3547 | 0.0212 |
横偏 | 0.2717 | 0.2675 | 0.1081 | |
射程 | 88.5846 | 82.8266 | 0.0064 | |
CNN-LSTM-ATT | 高度 | 14.4405 | 11.6751 | 0.0045 |
横偏 | 0.0788 | 0.0693 | 0.0255 |
[1] |
|
[2] |
|
[3] |
|
[4] |
胡星志, 王旭, 江雄, 等. 基于高斯过程回归的高超声速飞行器不确定轨迹预测[J]. 空天技术, 2022(4): 49-61.
|
|
|
[5] |
胡豹, 高永卫, 昔华倩. 基于误差反向传播神经网络的机弹分离轨迹预测研究[J]. 气动研究与试验, 2024, 2(2): 59-65.
|
|
|
[6] |
肖宗鑫, 李晓杰, 肖宗烁, 等. 基于RBF神经网络优化的无人驾驶车辆增量线性模型预测轨迹跟踪控制研究[J]. 重庆理工大学学报(自然科学版), 2021, 35(3): 36-45.
|
|
|
[7] |
谭紫阳, 高忠文, 邓宇. 基于改进极限学习机和深度神经网络融合的车辆轨迹长期预测[J]. 汽车技术, 2020(11): 16-20.
doi: 10.19620/j.cnki.1000-3703.20191396 |
|
|
[8] |
|
[9] |
李明阳, 鲁之君, 曹东晶, 等. 一种基于Transformer编码器与LSTM的飞机轨迹预测方法[J]. 航天返回与遥感, 2024, 45(2): 163-176.
|
|
|
[10] |
任济寰, 吴祥, 薄煜明, 等. 基于增强上下文信息长短期记忆网络的弹道轨迹预测[J]. 兵工学报, 2023, 44(2): 462-471.
doi: 10.12382/bgxb.2021.0489 |
doi: 10.12382/bgxb.2021.0489 |
|
[11] |
张宏鹏, 黄长强, 唐上钦, 等. 基于卷积神经网络的无人作战飞机飞行轨迹实时预测[J]. 兵工学报, 2020, 41(9): 1894-1903.
doi: 10.3969/j.issn.1000-1093.2020.09.022 |
doi: 10.3969/j.issn.1000-1093.2020.09.022 |
|
[12] |
|
[13] |
郑志伟, 管雪元, 傅健, 等. 基于卷积神经网络与长短期记忆神经网络的弹丸轨迹预测[J]. 兵工学报, 2023, 44(10): 2975-2983.
doi: 10.12382/bgxb.2022.0511 |
doi: 10.12382/bgxb.2022.0511 |
|
[14] |
|
[15] |
孔建国, 李亚彬, 张时雨, 等. 基于CNN-LSTM-attention模型航迹预测研究[J]. 航空计算技术, 2023, 53(1): 1-5.
|
|
|
[16] |
苗靖, 李晓婷. 基于Seq2Seq-Att的船舶轨迹预测算[J]. 火力与指挥控制, 2024, 49(4): 71-76.
|
|
|
[17] |
李战武, 张帅, 乔英峰, 等. 基于自注意力机制和 CNN-LSTM 的空战目标机动轨迹预测[J]. 兵器装备工程学报, 2023, 44(7):209-216.
|
|
|
[18] |
|
[19] |
|
[20] |
|
[1] | ZHAO Zhixin, CAO Yulong, CHEN Yuanshuai, ZHOU Huilin, WANG Yuhao. A Time-invariant Sparse Model and a Deep Unrolling Network for Target Detection of Passive Radar [J]. Acta Armamentarii, 2024, 45(8): 2806-2816. |
[2] | LI Ping, ZHOU Yu, CAO Ronggang, LI Fadong, CAO Yuxi, LI Jiawu, ZHANG Anqi. A Denoising Method for Complex Background Noise of Infrared Imaging Guidance System Based on Deep Learning and Dual-domain Fusion [J]. Acta Armamentarii, 2024, 45(6): 1747-1760. |
[3] | LUO Haowen, HE Shaoming, KANG Youwei. A Multitask Guidance Algorithm Based on Transfer Learning [J]. Acta Armamentarii, 2024, 45(6): 1787-1798. |
[4] | SHEN Ying, LIU Xiancai, WANG Shu, HUANG Feng. Real-time Detection of Low-altitude Camouflaged Targets Based on Polarization Encoded Images [J]. Acta Armamentarii, 2024, 45(5): 1374-1383. |
[5] | YANG Jiaming, PAN Yue, WANG Qiang, CAO Huaigang, GAO Sunpei. Research on Deep Learning Method of Underwater Weak Target Tracking [J]. Acta Armamentarii, 2024, 45(2): 385-394. |
[6] | ZHANG Kun, DU Ruiyi, SHI Haotian, HUA Shuai. Prediction of Aircraft Trajectory Based on Mogrifier-BiGRU [J]. Acta Armamentarii, 2024, 45(2): 373-384. |
[7] | TIAN Daming, MIAO Pu. Visible Light Communication Nonlinear Equalizer Based on Model Solving and Deep Learning [J]. Acta Armamentarii, 2024, 45(2): 466-473. |
[8] | SUN Kai, ZHANG Cheng, ZHAN Tian, SU Di. Multi-view Stereo Vision Reconstruction Network with Fusion Attention Mechanism and Multi-layer Dynamic Deformable Convolution [J]. Acta Armamentarii, 2024, 45(10): 3631-3641. |
[9] | PENG Peiran, REN Shubo, LI Jianan, ZHOU Hongwei, XU Tingfa. Illumination-aware Multispectral Fusion Network for Pedestrian Detection [J]. Acta Armamentarii, 2023, 44(9): 2622-2630. |
[10] | QIN Haolin, XU Tingfa, LI Jianan. Semi-supervised Hyperspectral Salient Object Detection Using Superpixel Attention and Siamese Structure [J]. Acta Armamentarii, 2023, 44(9): 2639-2649. |
[11] | ZHOU Yu, CAO Ronggang, LI Ping, MA Xiao. A Fuze Burst Point Detection Method for Outfield Test Images [J]. Acta Armamentarii, 2023, 44(8): 2453-2464. |
[12] | WANG Yang, FENG Yongxin, SONG Bixue, TIAN Binghe. A Modulation Recognition Algorithm of DP-DRCnet Convolutional Neural Network [J]. Acta Armamentarii, 2023, 44(2): 545-555. |
[13] | ZHANG Liang'an, CHEN Yang, XIE Shenglong, LIU Tongxin. Crack Detection System for Aircraft Protective Grill based on Machine Vision and Deep Learning [J]. Acta Armamentarii, 2023, 44(2): 507-516. |
[14] | WANG Qiang, WU Letian, LI Hong, WANG Yong, WANG Huan, YANG Wankou. An Infrared Small Target Detection Method via Dual Network Collaboration [J]. Acta Armamentarii, 2023, 44(10): 3165-3176. |
[15] | ZHENG Zhiwei, GUAN Xueyuan, FU Jian, MA Xunqiong, YIN Shang. Projectile Trajectory Prediction Based on CNN-LSTM Model [J]. Acta Armamentarii, 2023, 44(10): 2975-2983. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||