Acta Armamentarii ›› 2024, Vol. 45 ›› Issue (11): 4175-4190.doi: 10.12382/bgxb.2024.0485
WANG Bin1,2, ZHANG Jianshu1,2,*(), DUAN Zhifeng1,2, YUE Qixing1,2, GANG Kuankuan1,2, MIAO Yangyang1,2
Received:
2024-06-19
Online:
2024-11-26
Contact:
ZHANG Jianshu
CLC Number:
WANG Bin, ZHANG Jianshu, DUAN Zhifeng, YUE Qixing, GANG Kuankuan, MIAO Yangyang. Dynamics Modeling and Stability Control of Marching Tank Gun Control System[J]. Acta Armamentarii, 2024, 45(11): 4175-4190.
Add to citation manager EndNote|Ris|BibTeX
统计值 | 坐标轴 | 车速/(km·h-1) | ||
---|---|---|---|---|
20 | 25 | 30 | ||
x | 3.0387 | 3.1277 | 3.2677 | |
角加速度/(rad·s-2) | z | 2.1688 | 2.3016 | 2.3042 |
y | 0.5773 | 0.6177 | 0.7388 | |
x | 0.0049 | 0.0051 | 0.0053 | |
角速度/(rad·s-1) | z | 0.0285 | 0.0360 | 0.0421 |
y | 0.0011 | 0.0012 | 0.0014 |
Table 1 Comparison of the RMS fundamental vehicular excitations at different speeds on D-level road
统计值 | 坐标轴 | 车速/(km·h-1) | ||
---|---|---|---|---|
20 | 25 | 30 | ||
x | 3.0387 | 3.1277 | 3.2677 | |
角加速度/(rad·s-2) | z | 2.1688 | 2.3016 | 2.3042 |
y | 0.5773 | 0.6177 | 0.7388 | |
x | 0.0049 | 0.0051 | 0.0053 | |
角速度/(rad·s-1) | z | 0.0285 | 0.0360 | 0.0421 |
y | 0.0011 | 0.0012 | 0.0014 |
统计值 | 方向 | 控制器 | ||
---|---|---|---|---|
ADRNFTSMC | LADRC | LSMC | ||
σ/mrad | 方位 | 0.0041 | 0.0279 | 0.0154 |
高低 | 0.0858 | 0.2969 | 0.1970 | |
τ/s | 方位 | 0.2135 | 0.5760 | 0.8750 |
高低 | 0.0880 | 0.6470 | 0.7120 |
Table 2 Comparison of the system simulation results in Case 1
统计值 | 方向 | 控制器 | ||
---|---|---|---|---|
ADRNFTSMC | LADRC | LSMC | ||
σ/mrad | 方位 | 0.0041 | 0.0279 | 0.0154 |
高低 | 0.0858 | 0.2969 | 0.1970 | |
τ/s | 方位 | 0.2135 | 0.5760 | 0.8750 |
高低 | 0.0880 | 0.6470 | 0.7120 |
统计值 | 方向 | 控制器 | ||
---|---|---|---|---|
ADRNFTSMC | LADRC | ADRLSMC | ||
σ/mrad | 方位 | 0.0079 | 0.0563 | 0.0336 |
高低 | 0.0598 | 0.2333 | 0.2090 | |
τ/s(t=5s) | 方位 | 5.2660 | 5.6070 | 5.6800 |
τ/s(t=7s) | 7.2840 | 7.4750 | 7.5510 | |
τ/s(t=7s) | 高低 | 7.1170 | 7.4150 | 7.1540 |
τ/s(t=9s) | 9.2680 | 9.3320 | 9.3530 |
Table 3 Comparison of the system simulation results in Case 2
统计值 | 方向 | 控制器 | ||
---|---|---|---|---|
ADRNFTSMC | LADRC | ADRLSMC | ||
σ/mrad | 方位 | 0.0079 | 0.0563 | 0.0336 |
高低 | 0.0598 | 0.2333 | 0.2090 | |
τ/s(t=5s) | 方位 | 5.2660 | 5.6070 | 5.6800 |
τ/s(t=7s) | 7.2840 | 7.4750 | 7.5510 | |
τ/s(t=7s) | 高低 | 7.1170 | 7.4150 | 7.1540 |
τ/s(t=9s) | 9.2680 | 9.3320 | 9.3530 |
车速 | 方向 | 控制器 | ||
---|---|---|---|---|
ADRNFTSMC | LADRC | ADRLSMC | ||
25km/h | 方位 | 0.0097 | 0.0742 | 0.0439 |
高低 | 0.0938 | 0.3126 | 0.2879 | |
30km/h | 方位 | 0.0149 | 0.1043 | 0.0595 |
高低 | 0.1397 | 0.4207 | 0.3879 |
Table 4 Comparison of stabilizing and tracking errors of the system after 6 seconds in Case 3 mrad
车速 | 方向 | 控制器 | ||
---|---|---|---|---|
ADRNFTSMC | LADRC | ADRLSMC | ||
25km/h | 方位 | 0.0097 | 0.0742 | 0.0439 |
高低 | 0.0938 | 0.3126 | 0.2879 | |
30km/h | 方位 | 0.0149 | 0.1043 | 0.0595 |
高低 | 0.1397 | 0.4207 | 0.3879 |
[1] |
常天庆, 王钦钊, 张雷, 等. 装甲车辆火控系统[M]. 北京: 北京理工大学出版社, 2020.
|
|
|
[2] |
臧克茂, 马晓军, 李长兵. 现代坦克炮控系统[M]. 北京: 国防工业出版社, 2007.
|
|
|
[3] |
|
[4] |
|
[5] |
王一珉, 杨国来, 王丽群. 坦克炮控系统RBF神经网络自适应鲁棒控制方法研究[J]. 振动与冲击, 2022, 41(24):72-78.
|
|
|
[6] |
|
[7] |
|
[8] |
|
[9] |
|
[10] |
胡继辉, 侯远龙, 高强, 等. 坦克炮控系统神经网络自适应滑模控制方法[J]. 火力与指挥控制, 2018, 43(6): 118-121,126.
|
|
|
[11] |
|
[12] |
袁东, 马晓军, 魏曙光, 等. 坦克炮控系统直传式驱动及其死区补偿控制[J]. 电机与控制学报, 2016, 20(5): 111-118.
|
|
|
[13] |
|
[14] |
田建辉, 钱林方, 徐亚栋, 等. 火力线跟踪与瞄准的任务空间控制方法[J]. 南京理工大学学报(自然科学版), 2011, 35(4): 489-493.
|
|
|
[15] |
袁树森, 邓文翔, 姚建勇, 等. 基于Mworks的坦克随动系统建模与仿真研究[J]. 弹道学报, 2021, 33(1): 35-43.
doi: 10.12115/j.issn.1004-499X(2021)01-006 |
doi: 10.12115/j.issn.1004-499X(2021)01-006 |
|
[16] |
韩京清. 自抗扰控制技术[M]. 北京: 国防工业出版社, 2008.
|
|
|
[17] |
|
[18] |
李世华, 王翔宇, 丁世宏, 等. 滑模控制理论与应用研究[M]. 北京: 科学出版社, 2022.
|
|
|
[19] |
|
[20] |
王超. 坦克行进间非线性动力学建模与主动稳定控制研究[D]. 南京: 南京理工大学, 2021.
|
|
|
[21] |
|
[22] |
doi: 10.1016/j.isatra.2024.01.005 pmid: 38220544 |
[23] |
赵新运, 于剑桥. 新型迅捷弹箭动力学建模与姿态控制[J]. 兵工学报, 2024, 45(7):2182-2196.
doi: 10.12382/bgxb.2023.0404 |
doi: 10.12382/bgxb.2023.0404 |
|
[24] |
|
[25] |
高雨轩, 侯远龙, 高强, 等. 机载光电跟踪系统的自抗扰与快速非奇异终端滑模组合控制方法[J]. 兵工学报, 2023, 44(4):1071-1085.
|
doi: 10.12382/bgxb.2022.0890 |
|
[26] |
|
[27] |
|
[28] |
马晓军, 袁东, 魏曙光. 坦克武器电力传动控制原理与应用[M]. 北京: 国防工业出版社, 2023.
|
|
|
[29] |
|
[30] |
郑颖. 某集束火箭炮位置伺服系统自抗扰方法研究[D]. 南京: 南京理工大学, 2015.
|
|
|
[31] |
陈宇, 杨国来, 付羽翀, 等. 高速机动条件下坦克行进间火炮非线性振动动力学研究[J]. 兵工学报, 2019, 40(7): 1339-1348.
doi: 10.3969/j.issn.1000-1093.2019.07.002 |
doi: 10.3969/j.issn.1000-1093.2019.07.002 |
|
[32] |
|
[1] | CHEN Qi, QIN Guoyang. Trajectory Tracking Control for Hybrid-driven Unmanned Underwater Vehicles with Free-flying and Crawling Dual-mode [J]. Acta Armamentarii, 2024, 45(9): 3216-3229. |
[2] | LIU Jinrong, LI Wei. Non-magnetic Heating and High-precision Temperature Control of the Alkali-metal Vapor Cell in SERF Atomic Spin Gyroscope [J]. Acta Armamentarii, 2024, 45(9): 3288-3296. |
[3] | LIN Yubin, HOU Baolin, BAO Dan, ZHAO Wei. Implicit Lyapunov Function-based Variable Gain Super-twisting Sliding Mode Control of an Ammunition Transfer Manipulator [J]. Acta Armamentarii, 2024, 45(8): 2573-2583. |
[4] | JI Wen, LI Chunna, JIA Xuyi, WANG Gang, GONG Chunlin. A High-spinning Projectile Aerodynamic Modeling Method Combining System Identification and Transfer Learning [J]. Acta Armamentarii, 2024, 45(7): 2197-2208. |
[5] | ZHAO Xinyun, YU Jianqiao. Dynamic Modeling and Attitude Control for Novel Agile Projectile [J]. Acta Armamentarii, 2024, 45(7): 2182-2196. |
[6] | ZHU Weilin, YAO Jianyong, LIU Jiahui, LI Lan, ZHANG Jialin. Active Disturbance Rejection Force Synchronization Control for Pump-controlled Multi-link Erection System [J]. Acta Armamentarii, 2024, 45(6): 1906-1920. |
[7] | LIN Zhonglin, WANG Haitao, LIU Wenchao, GAN Jinyu, ZHANG Tianhong, HUANG Feng. Aero-engine Compressor Pressure Simulation Method Based on Multi-mode Acceleration and Backstepping Sliding Mode [J]. Acta Armamentarii, 2024, 45(6): 1776-1786. |
[8] | WU Rui, YU Huilong, DONG Haotian, XI Junqiang. Refined Dynamics Modeling and Simulation of Special Tracked Vehicles [J]. Acta Armamentarii, 2024, 45(5): 1384-1401. |
[9] | WEI Qiaoling, DU Yuxin, ZHOU Chao, WANG Fang. Non-singular Sliding Mode Control of Non-minimum Phase Hypersonic Vehicles [J]. Acta Armamentarii, 2024, 45(11): 3949-3958. |
[10] | TIAN Ye, CHEN Guangsong, LIU Taisu. Wear Characteristics of Coordinated Ammunition Ramming Mechanism in Automatic Ammunition Loading System for Artillery [J]. Acta Armamentarii, 2024, 45(11): 4062-4070. |
[11] | ZHOU Hao, BAO Xiaopeng, ZHANG Honggang. Improved Design of Phase Modulation Compensation and Analysis of Disturbance Suppression for UAV Active Disturbance Rejection Control [J]. Acta Armamentarii, 2024, 45(10): 3619-3630. |
[12] | DING Wengjun, ZHANG Guozong, LIU Haimin, CHAI Yajun, WANG Chiyu, MAO Zhaoyong. Tracking Control of Underactuated Autonomous Underwater Vehicle Formation under Current Disturbance and Communication Delay [J]. Acta Armamentarii, 2024, 45(1): 184-196. |
[13] | WANG Zhilin, WANG Jiang, QI Qi, FAN Shipeng. Novel Adaptive Robust Roll Control Method Based on LESO [J]. Acta Armamentarii, 2023, 44(7): 1920-1929. |
[14] | MA Yuemeng, WANG Linwei, SHAO Chuntao, ZHOU Di, WANG Yonghai. Active-Disturbance-Rejection/Robust Attitude Control System Design of Underactuated Vehicle Based on Flap Control [J]. Acta Armamentarii, 2023, 44(5): 1251-1266. |
[15] | GAO Yuxuan, HOU Yuanlong, GAO Qiang, HOU Runmin. Compound Control Method of ADRC and FNTSM for Airborne Object Tracking System [J]. Acta Armamentarii, 2023, 44(4): 1071-1085. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||